
© 2013 EnterpriseDB Corporation. All rights reserved. 1

WAL for DBAs – Everything you
want to know
Devrim Gündüz

Principal Systems Engineer @ EnterpriseDB

devrim.gunduz@EnterpriseDB.com

Twitter : @DevrimGunduz

mailto:devrim.gunduz@EnterpriseDB.com

FOSDEM PGDAY 2017
WAL for DBAs

2

● Who is this guy?

– Using Red Hat (and then Fedora) since 1996.

– Using PostgreSQL since 1998.

– Responsible for PostgreSQL YUM repository.
● Used to break website, but recently gave up.

– Started some work on PostgreSQL Dockerfiles
recently. https://www.pgdocker.org

– Working at EnterpriseDB since 2011.

– The Guy With The PostgreSQL Tattoo! (imitations may
exist :))

– Istanbul, Turkiye.

About me

https://www.pgdocker.org/

FOSDEM PGDAY 2017
WAL for DBAs

3

● Please tweet!

– #PostgreSQL
– #pgday
– #FOSDEM

Social media

FOSDEM PGDAY 2017
WAL for DBAs

4

(Did you tweet? Thanks!)

Social media

FOSDEM PGDAY 2017
WAL for DBAs

5

(Did you tweet? Thanks!)

Alternative hashtag:

#blamemagnus

Social media

FOSDEM PGDAY 2017
WAL for DBAs

6

June 26-28, Boston

We want to see great speakers who
can talk to the technical aspects of

using Postgres in the enterprise.

http://postgresvision.com/

Postgres Vision 2017

http://postgresvision.com/

FOSDEM PGDAY 2017
WAL for DBAs

7

Agenda (in random order)

• What is WAL?

• What does it include?

• How to read it?

• What about wal_level ?

• Replication and WAL

• Backup and WAL

• PITR and WAL

• Other topics

FOSDEM PGDAY 2017
WAL for DBAs

8

Please do not delete WAL files
manually.

Please.

Before we actually start:

FOSDEM PGDAY 2017
WAL for DBAs

9

Please do not delete WAL files
manually.

Please.
Please.

Before we actually start:

FOSDEM PGDAY 2017
WAL for DBAs

10

Please do not delete WAL files
manually.

Please.
Please.

PLEASE.

Before we actually start:

FOSDEM PGDAY 2017
WAL for DBAs

11

What is WAL?

• Write Ahead Log:
• Logging of transactions

• a.k.a. xlog (transaction log),

• 16 MB in most of the installations (can be configured, --with-
wal-segsize)

• 8 kB page size (can be configured, --with-wal-blocksize)
• pg_xlog (<= 9.6)→ pg_wal (10+)

• Because people deleted files under “log” directory.

FOSDEM PGDAY 2017
WAL for DBAs

12

MAKE WAL GREAT AGAIN!

So:

FOSDEM PGDAY 2017
WAL for DBAs

13

What is WAL?

• Designed to prevent data loss in most of the situations
• OS crash, hardware failure, PostgreSQL crash.

• Write transactions are written to WAL
• Before transaction result is sent to the client
• Data files are not changed on each transaction
• Performance benefit

• Should be kept in a separate drive.
• Initdb, or symlink

FOSDEM PGDAY 2017
WAL for DBAs

14

What is WAL?

• Built-in feature

• Life before WAL (not before B.C., though):
• All changes go to durable storage (eventually), but:

• Data page is loaded to shared_buffers
• Changes are made there
• Dirty buffers!

• But not timely!

• Crash → Data loss!

FOSDEM PGDAY 2017
WAL for DBAs

15

What is WAL?

• Life after WAL:
• Almost all “modifications” are “logged” to WAL files (xlog

record)

• Even if the transaction is aborted (ROLLBACK)
• wal_buffers → WAL segments (files)

• Ability to recover data after a crash

• Checkpoint!

FOSDEM PGDAY 2017
WAL for DBAs

16

Where is it used?

• Transaction logging!

• Replication

• PITR

• REDO
• Sequentially availability is a must.

• REDO vs UNDO

• No REDO for temp tables and unlogged tables.

FOSDEM PGDAY 2017
WAL for DBAs

17

WAL file naming

• 24 chars, hex.
• 1st 8 chars: timelineID

• 00000001 is the timelineID created by initdb
• 2nd 8 chars: logical WAL file

• 3rd 8 chars: WAL segment name (physical WAL file)

• 000000010000000000000001 → 000000010000000000000002

• … 0000000100000000000000FF →
000000010000000100000000

• Use PostgreSQL’s internal tools to manage them
• pg_archivecleanup

• pg_resetxlog

• pg_xlogdump

•

FOSDEM PGDAY 2017
WAL for DBAs

18

pg_xlogdump

• We are all human.

• Use pg_xlogdump, if you want to see contents of WAL files

• rmgr --help to get list of all resource names, -f for follow, -n for limit. -z for stats.

• pg_xlogdump -n 20 -f 000000010000000700000033

• rmgr: Heap len (rec/tot): 3/ 59, tx: 389744, lsn: 7/33B66228, prev 7/33B661F0, desc: INSERT+INIT off 1,
blkref #0: rel 1663/13326/190344 blk 0

• rmgr: Heap len (rec/tot): 3/ 59, tx: 389744, lsn: 7/33B66268, prev 7/33B66228, desc: INSERT off 2, blkref
#0: rel 1663/13326/190344 blk 0

• rmgr: Transaction len (rec/tot): 8/ 34, tx: 389744, lsn: 7/33B662A8, prev 7/33B66268, desc: COMMIT 2017-02-
03 03:03:49.482223 +03

• rmgr: Heap len (rec/tot): 14/ 69, tx: 389745, lsn: 7/33B662D0, prev 7/33B662A8, desc: HOT_UPDATE off
1 xmax 389745 ; new off 3 xmax 0, blkref #0: rel 1663/13326/190344 blk 0

• rmgr: Transaction len (rec/tot): 8/ 34, tx: 389745, lsn: 7/33B66318, prev 7/33B662D0, desc: COMMIT 2017-02-
03 03:03:54.091645 +03

• rmgr: XLOG len (rec/tot): 80/ 106, tx: 0, lsn: 7/33B66340, prev 7/33B66318, desc:
CHECKPOINT_ONLINE redo 7/33B66340; tli 1; prev tli 1; fpw true; xid 0/389746; oid 198532; multi 1; offset 0; oldest
xid 1866 in DB 129795; oldest multi 1 in DB 90123; oldest/newest commit timestamp xid: 388437/389745; oldest
running xid 0; online

• rmgr: XLOG len (rec/tot): 0/ 24, tx: 0, lsn: 7/33B663B0, prev 7/33B66340, desc: SWITCH

•

•

FOSDEM PGDAY 2017
WAL for DBAs

19

Shared Buffers, Bgwriter and checkpointer

• shared_buffers in PostgreSQL
• Dirty buffers

• This is where transactions are performed

• Side effect: Causes inconsistency(?) on durable storage, due
to dirty buffers.

• Bgwriter: Background writer
• LRU

• Checkpointer
• Pushing all dirty buffers to durable storage

• Triggered automatically or manually

• Backends may also write data to heap

FOSDEM PGDAY 2017
WAL for DBAs

20

WAL: LSN

• Log Sequence Number
• Position of the record in WAL file.

• Provides uniqueness for each xlog record.

• Per docs: “Pointer to a location in WAL file”

• During recovery, LSN on the page and LSN in the WAL file are
compared.

• The larger one wins.

FOSDEM PGDAY 2017
WAL for DBAs

21

● Probably not the last one in ls list!

WAL: Finding current WAL file

• postgres=# SELECT * from pg_current_xlog_location();

pg_current_xlog_location

40E6/2C85AC10

• postgres=# SELECT pg_xlogfile_name(‘40E6/2C85AC10');
pg_xlogfile_name

00000003000040E60000002C

So:

• postgres=# SELECT pg_xlogfile_name(pg_current_xlog_location());

pg_xlogfile_name

00000003000040E60000002C

FOSDEM PGDAY 2017
WAL for DBAs

22

Checkpoint, and pg_control

● As soon as the checkpoint starts, REDO point is stored in shared buffers.

● A WAL record is created referencing checkpoint start, and it is first written to WAL
buffers, and then eventually to pg_control.

– pg_control is under $PGDATA/global

● Unlike bgwriter, checkpointer writes all of the data in the shared_buffers to
durable storage.

● PostgreSQL knows the latest REDO point, by looking at pg_control file.

FOSDEM PGDAY 2017
WAL for DBAs

23

Checkpoint, and pg_control

● pg_controldata:

– Latest checkpoint location: 40E7/E43B16B8

– Prior checkpoint location: 40E7/D8689090

 They are LSN.

● When checkpoint is completed, pg_control is updated with the position of
checkpoint.

● After checkpoint, old WAL files are either recycled, or removed.

● An “estimation” is done while recycling (based on previous checkpoint cycles)

● 9.5+: In minimum, min_wal_size WAL files are always recycled for future usage

FOSDEM PGDAY 2017
WAL for DBAs

24

pg_control and REDO

● postmaster reads pg_control on startup.

/usr/pgsql-10/bin/pg_controldata -D /var/lib/pgsql/10/data | grep state

– “Database cluster state”:

● starting up

● shut down

● shut down in recovery

● shutting down

● in crash recovery

● in archive recovery

● in production

● If pg_control says “in production”, but db server is not running, then this instance
is eligible for a recovery!

FOSDEM PGDAY 2017
WAL for DBAs

25

pg_control and REDO

● pg_control is the critical piece

– Should not be corrupted

– Per docs: “...theoretically a weak spot”

● REDO: All WAL files must be sequentially available for complete recovery.

FOSDEM PGDAY 2017
WAL for DBAs

26

Moving to the new WAL

● A WAL segment may be full

● PostgreSQL archiver will switch to the new xlog, if PostgreSQL reaches
archive_timeout value.

● DBA issues pg_switch_xlog() function.

FOSDEM PGDAY 2017
WAL for DBAs

27

WAL: Archiving

• Replication, backup, PITR

• archive_mode

• archive_command

• archive_timeout

FOSDEM PGDAY 2017
WAL for DBAs

28

WAL: Point-In-Time Recovery (PITR)

• A base backup (pg_basebackup!) and the WAL files are needed.

• WAL files must be sequentially complete – otherwise PITR won’t
be finished.

• “Roll-forward recovery”

FOSDEM PGDAY 2017
WAL for DBAs

29

WAL: Point-In-Time Recovery (PITR)

• PITR: Replaying WAL files on base backups, until recovery
target.

• recovery_target_{time, xid, name, lsn}

• If not specified, all archived WAL files are replayed.

• recovery.conf and backup_label: Enters recovery mode.
• restore_command,

recovery_target_XXX,recovery_target_inclusive

• backup_label: Also includes checkpoint location (starting point of
recovery)

• Almost like regular recovery process (WAL replay)

• Up to recovery_target_XXX is replayed.

FOSDEM PGDAY 2017
WAL for DBAs

30

WAL: Point-In-Time Recovery (PITR)

• After recovery process, timelineID is increased by 1 (also
physical WAL file name is also increased by 1)

• A .history file is created.

• $ cat 00000003.history
1 403F/58000098 no recovery target specified

2 4048/43000098 before 2017-01-28 11:13:21.124512+03

“WAL files were replayed until the given time above, and theit
replay location is 4048/43000098.

•

•

•

FOSDEM PGDAY 2017
WAL for DBAs

31

Full page writes

● A WAL record cannot be replayed on a page which is corrupted during
bgwriter and/or checkpointer, because of hardware failure, OS crash,
kernel failure, etc.

● Full page writes IYF.

● Enabled by default.

– Please turn it off, if you want to throw a lot of money to PostgreSQL
support companies. Otherwise, don’t do so ;)

● PostgreSQL writes header data + the entire page as XLOG record,
when a page changes after every checkpoint.

– Increasing checkpoint_timeout helps.

– Full-page image, backup block.

● PostgreSQL can even recover itself from write failures (not hw failures,
though)

FOSDEM PGDAY 2017
WAL for DBAs

32

WAL parameters

• wal_level: Minimal, replica or logical
• Must be > minimal for archiver to be able to run

• fsync : Always on, please.

• synchronous_commit: May lose some of the latest transactions
• Server returns success to the client

• Server waits a bit to flush the data to durable storage.

• Less risky than fsync

• wal_sync_method : fdatasync is usually better. Use
pg_test_fsync for testing.

FOSDEM PGDAY 2017
WAL for DBAs

33

WAL parameters

• wal_log_hints: When this value is set to on , the server writes the entire content of
each disk page to WAL after a checkpoint and during the first modification of that
page, even for non-critical modifications of so-called hint bits.

• wal_compression: off by default. Less WAL files, more CPU overhead.

• wal_buffers: -1: Automatic tuning of wal buffers: 1/32 of shared_buffers (not less than
64kB or no more than 16 MB (1 WAL file)

• wal_writer_delay : Rounds between WAL writer flushes WAL.

• wal_writer_flush_after: New in 9.6

FOSDEM PGDAY 2017
WAL for DBAs

34

Questions, comments?

© 2013 EnterpriseDB Corporation. All rights reserved. 35

WAL for DBAs – Everything you
want to know
Devrim Gündüz

Principal Systems Engineer @ EnterpriseDB

devrim.gunduz@EnterpriseDB.com

Twitter : @DevrimGunduz

mailto:devrim.gunduz@EnterpriseDB.com

	Presentation Title
	Layout: Title and Content, Arial 32pt
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

