
© 2013 EnterpriseDB Corporation. All rights reserved. 1

WAL for DBAs – (Almost)
Everything you want to know
Devrim Gündüz

Principal Systems Engineer @ EnterpriseDB

devrim.gunduz@EnterpriseDB.com

Twitter : @DevrimGunduz

mailto:devrim.gunduz@EnterpriseDB.com

Postgres London – July 2019
WAL: (Almost) everything you want to know

2

● Who is this guy?

– Using Red Hat (and then Fedora) since 1996.

– Using PostgreSQL since 1998.
● Cheers for 21st year!

– Responsible for PostgreSQL YUM (RHEL, CentOS,
Fedora) and Zypp (SLES) repositories.

– Fedora and EPEL packager.

– Working at EnterpriseDB since 2011.

– Living in London, UK.

– The Guy With The PostgreSQL Tattoo! (Please discard
imitations)

About me

Postgres London – July 2019
WAL: (Almost) everything you want to know

3

● The largest PostgreSQL conference in Europe.

● Milan, Italy.

● 15 October: Training day.

● 16-18 October: Conference

● Registration is open: https://2019.pgconf.eu/registration

● CfP is also open: https://2019.pgconf.eu/callforpapers/

PGConf.EU 2019

Postgres London – July 2019
WAL: (Almost) everything you want to know

4

Please tweet:

#PostgreSQL

#PostgresLondon

Please follow:

@Postgres_London

@PostgreSQL

@PGConfEU

Social Media

Postgres London – July 2019
WAL: (Almost) everything you want to know

5

#BlameMagnus

@BlameMagnus

Alternative Hashtag and account

Postgres London – July 2019
WAL: (Almost) everything you want to know

6

 (Did you tweet? Thanks!)

Social Media

Postgres London – July 2019
WAL: (Almost) everything you want to know

7

Agenda (in random order)

• What is WAL?

• What does it include?

• How to read it?

• What about wal_level ?

• Replication and WAL

• Backup and WAL

• PITR and WAL

• Full page writes!

• Other topics

Postgres London – July 2019
WAL: (Almost) everything you want to know

8

Please do not delete WAL files
manually.

Please.

Before we actually start:

Postgres London – July 2019
WAL: (Almost) everything you want to know

9

Please do not delete WAL files
manually.

Please.
Please.

Before we actually start:

Postgres London – July 2019
WAL: (Almost) everything you want to know

10

Please do not delete WAL files
manually.

Please.
Please.

PLEASE.

Before we actually start:

Postgres London – July 2019
WAL: (Almost) everything you want to know

11

What is WAL?

• Write Ahead Log:
• Logging of transactions

• a.k.a. xlog in ancient times (transaction log),

• 16 MB in most of the installations (can be configured, --with-
wal-segsize)

• v11+: initdb has a --wal-segsize parameter
• Initdb --wal-segsize=64 ←in MB

• 8 kB page size (can be configured, --with-wal-blocksize
during configure)

Postgres London – July 2019
WAL: (Almost) everything you want to know

12

What is WAL?

• Write Ahead Log:
• Logging of transactions

• a.k.a. xlog in ancient times (transaction log),

• 16 MB in most of the installations (can be configured, --with-
wal-segsize)

• v11+: initdb has a --wal-segsize parameter
• Initdb --wal-segsize=64 ←in MB

• 8 kB page size (can be configured, --with-wal-blocksize
during configure)

• pg_xlog (<= 9.6)→ pg_wal (10+)

• Because people deleted files under “log” directory.

Postgres London – July 2019
WAL: (Almost) everything you want to know

13

What is WAL?

• Designed to prevent data loss in most of the situations
• OS crash, hardware failure, PostgreSQL crash.

Postgres London – July 2019
WAL: (Almost) everything you want to know

14

What is WAL?

• Designed to prevent data loss in most of the situations
• OS crash, hardware failure, PostgreSQL crash.

• Write transactions are written to WAL
• Before transaction result is sent to the client
• Data files are not changed on each transaction
• Performance benefit

Postgres London – July 2019
WAL: (Almost) everything you want to know

15

What is WAL?

• Designed to prevent data loss in most of the situations
• OS crash, hardware failure, PostgreSQL crash.

• Write transactions are written to WAL
• Before transaction result is sent to the client
• Data files are not changed on each transaction
• Performance benefit

• Should be kept in a separate drive.
• Initdb, or symlink

Postgres London – July 2019
WAL: (Almost) everything you want to know

16

What is WAL?

• Built-in feature

• Life before WAL (not before B.C., though):
• All changes go to durable storage (eventually), but:

• Data page is loaded to shared_buffers
• Changes are made there
• Dirty buffers!

• But not timely!

• Crash → Data loss!

Postgres London – July 2019
WAL: (Almost) everything you want to know

17

What is WAL?

• Life after WAL:
• Almost all of the “modifications” are “logged” to WAL files

(WAL record)

• Even if the transaction is aborted (ROLLBACK)

Postgres London – July 2019
WAL: (Almost) everything you want to know

18

What is WAL?

• Life after WAL:
• Almost all “modifications” are “logged” to WAL files (WAL

record)

• Even if the transaction is aborted (ROLLBACK)
• wal_buffers → WAL segments (files)

Postgres London – July 2019
WAL: (Almost) everything you want to know

19

What is WAL?

• Life after WAL:
• Almost all “modifications” are “logged” to WAL files (WAL

record)

• Even if the transaction is aborted (ROLLBACK)
• wal_buffers → WAL segments (files)

• Ability to recover data after a crash!

Postgres London – July 2019
WAL: (Almost) everything you want to know

20

What is WAL?

• Life after WAL:
• Almost all “modifications” are “logged” to WAL files (WAL

record)

• Even if the transaction is aborted (ROLLBACK)
• wal_buffers → WAL segments (files)

• Ability to recover data after a crash

• Checkpoint!

Postgres London – July 2019
WAL: (Almost) everything you want to know

21

Where is it used?

• Transaction logging!

• Replication

• PITR

• REDO
• Sequentially availability is a must.

• REDO vs UNDO

• No REDO for temp tables and unlogged tables.

Postgres London – July 2019
WAL: (Almost) everything you want to know

22

Shared Buffers, Bgwriter and checkpointer

• shared_buffers in PostgreSQL
• Dirty buffers

• This is where transactions are performed

• Side effect: Causes inconsistency(?) on durable storage, due
to dirty buffers.

• Bgwriter: Background writer
• LRU

• Checkpointer
• Pushing all dirty buffers to durable storage

• Triggered automatically or manually

• Backends may also write data to heap

Postgres London – July 2019
WAL: (Almost) everything you want to know

23

WAL: LSN

• Log Sequence Number
• Position of the record in WAL file.

• Provides uniqueness for each WAL record.

• 64-bit integer (historically 2x32-bit) (We’ll need this info soon)

• Per docs: “Pointer to a location in WAL file”

• LSN: Block ID + Segment ID (See next slides)

• During recovery, LSN on the page and LSN in the WAL file are
compared.

• The larger one wins.

Postgres London – July 2019
WAL: (Almost) everything you want to know

24

WAL file naming

• 24 chars, hex.
• 1st 8 chars: timelineID

• 00000001 is the timelineID created by initdb
• 2nd 8 chars: Block ID

• 3rd 8 chars: Segment ID

• 000000010000000000000001 → 000000010000000000000002

• … 0000000100000000000000FF →
000000010000000100000000

• ...and 0000000100000001000000FF →
000000010000000200000000

Postgres London – July 2019
WAL: (Almost) everything you want to know

25

WAL file naming

• 24 chars, hex.
• 1st 8 chars: timelineID

• 00000001 is the timelineID created by initdb
• 2nd 8 chars: Block ID

• 3rd 8 chars: Segment ID

• 000000010000000000000001 → 000000010000000000000002

• … 0000000100000000000000FF →
000000010000000100000000

• ...and 0000000100000001000000FF →
000000010000000200000000

Postgres London – July 2019
WAL: (Almost) everything you want to know

26

WAL file naming

• Default WAL file: 16 MB
• Location within a WAL file can be expressed using 24 bits

(because 2^24 = 16MB).

• Take 64, split it into 32 + 32, subtract 24 from the second 32,
you get 8, which is the number of bits from the low-order 32-
bit integer that have to be stored in the WAL file name.

• In hexadecimal, each character represents 4 bits, so to find
the number of characters required to represent 8 bits, we
take 8 / 4 = 2. And 2 is the number of 2 F’s in the previous
slide.

Postgres London – July 2019
WAL: (Almost) everything you want to know

27

● Probably not the last one in ls list!

WAL: Finding current WAL file

• postgres=# SELECT * from pg_current_wal_lsn();

pg_current_wal_location

40E6/2C85AC10

• postgres=# SELECT pg_walfile_name(‘40E6/2C85AC10');
pg_walfile_name

00000003000040E60000002C

So:

• postgres=# SELECT pg_walfile_name(pg_current_wal_lsn());

pg_walfile_name

00000003000040E60000002C

Postgres London – July 2019
WAL: (Almost) everything you want to know

28

Checkpoint, and pg_control

● As soon as the checkpoint starts, REDO point is stored in shared buffers.

● A WAL record is created referencing checkpoint start, and it is first written to WAL
buffers, and then eventually to pg_control.

– pg_control is under $PGDATA/global

● Unlike bgwriter, checkpointer writes all of the data in the shared_buffers to
durable storage.

● PostgreSQL knows the latest REDO point, by looking at pg_control file.

● More will come with full page writes.

Postgres London – July 2019
WAL: (Almost) everything you want to know

29

Checkpoint, and pg_control

● pg_controldata (before v11):

 Latest checkpoint location: 40E7/E43B16B8

 Prior checkpoint location: 40E7/D8689090

● pg_controldata (v11+):

 Latest checkpoint location: 40E7/E43B16B8

 They are LSN.

Postgres London – July 2019
WAL: (Almost) everything you want to know

30

Checkpoint, and pg_control

● pg_controldata (before v11):

 Latest checkpoint location: 40E7/E43B16B8

 Prior checkpoint location: 40E7/D8689090

● pg_controldata (v11+):

 Latest checkpoint location: 40E7/E43B16B8

 They are LSN.

● When checkpoint is completed, pg_control is updated with the position of
checkpoint.

Postgres London – July 2019
WAL: (Almost) everything you want to know

31

Checkpoint, and pg_control

● pg_controldata (before v11):

 Latest checkpoint location: 40E7/E43B16B8

 Prior checkpoint location: 40E7/D8689090

● pg_controldata (v11+):

 Latest checkpoint location: 40E7/E43B16B8

 They are LSN.

● When checkpoint is completed, pg_control is updated with the position of
checkpoint.

● After checkpoint, old WAL files are either recycled, or removed.

Postgres London – July 2019
WAL: (Almost) everything you want to know

32

Checkpoint, and pg_control

● pg_controldata (before v11):

 Latest checkpoint location: 40E7/E43B16B8

 Prior checkpoint location: 40E7/D8689090

● pg_controldata (v11+):

 Latest checkpoint location: 40E7/E43B16B8

 They are LSN.

● When checkpoint is completed, pg_control is updated with the position of
checkpoint.

● After checkpoint, old WAL files are either recycled, or removed.

● An “estimation” is done while recycling (based on previous checkpoint cycles)

Postgres London – July 2019
WAL: (Almost) everything you want to know

33

Checkpoint, and pg_control

● pg_controldata (before v11):

 Latest checkpoint location: 40E7/E43B16B8

 Prior checkpoint location: 40E7/D8689090

● pg_controldata (v11+):

 Latest checkpoint location: 40E7/E43B16B8

 They are LSN.

● When checkpoint is completed, pg_control is updated with the position of
checkpoint.

● After checkpoint, old WAL files are either recycled, or removed.

● An “estimation” is done while recycling (based on previous checkpoint cycles)

● 9.5+: In minimum, min_wal_size WAL files are always recycled for future usage

Postgres London – July 2019
WAL: (Almost) everything you want to know

34

pg_control and REDO

● postmaster reads pg_control on startup.

/usr/pgsql-12/bin/pg_controldata -D /var/lib/pgsql/12/data | grep state

– “Database cluster state”:

● starting up

● shut down

● shut down in recovery

● shutting down

● in crash recovery

● in archive recovery

● in production

● If pg_control says “in production”, but db server is not running, then this instance
is eligible for a recovery!

Postgres London – July 2019
WAL: (Almost) everything you want to know

35

pg_control and REDO

● pg_control is the critical piece

– Should not be corrupted

– Per docs: “...theoretically a weak spot”, but no issues reported yet!

– There is a way to recover, but not implemented yet.

● REDO: All WAL files must be sequentially available for complete recovery.

● UNDO: Not available in Postgres yet.

– See:

● https://github.com/EnterpriseDB/zheap/

● https://wiki.postgresql.org/wiki/Zheap

Postgres London – July 2019
WAL: (Almost) everything you want to know

36

Moving to the new WAL

● A WAL segment may be full

● PostgreSQL archiver will switch to the new WAL, if PostgreSQL reaches
archive_timeout value.

● DBA issues pg_switch_wal() function.

Postgres London – July 2019
WAL: (Almost) everything you want to know

37

WAL: Archiving

• Replication, backup, PITR

• archive_mode

• archive_command

• archive_timeout

Postgres London – July 2019
WAL: (Almost) everything you want to know

38

WAL management

• Use PostgreSQL’s internal tools to manage them
• pg_archivecleanup

• pg_resetwal

• pg_waldump

•

Postgres London – July 2019
WAL: (Almost) everything you want to know

39

pg_waldump

• We are all human.

• Use pg_waldump, if you want to see contents of WAL files

• rmgr --help to get list of all resource names, -f for follow, -n for limit. -z for stats.

• pg_waldump -n 20 -f 000000010000000700000033

• rmgr: Heap len (rec/tot): 3/ 59, tx: 389744, lsn: 7/33B66228, prev 7/33B661F0, desc: INSERT+INIT off 1,
blkref #0: rel 1663/13326/190344 blk 0

• rmgr: Heap len (rec/tot): 3/ 59, tx: 389744, lsn: 7/33B66268, prev 7/33B66228, desc: INSERT off 2, blkref
#0: rel 1663/13326/190344 blk 0

• rmgr: Transaction len (rec/tot): 8/ 34, tx: 389744, lsn: 7/33B662A8, prev 7/33B66268, desc: COMMIT 2017-02-
03 03:03:49.482223 +03

• rmgr: Heap len (rec/tot): 14/ 69, tx: 389745, lsn: 7/33B662D0, prev 7/33B662A8, desc: HOT_UPDATE off
1 xmax 389745 ; new off 3 xmax 0, blkref #0: rel 1663/13326/190344 blk 0

• rmgr: Transaction len (rec/tot): 8/ 34, tx: 389745, lsn: 7/33B66318, prev 7/33B662D0, desc: COMMIT 2017-02-
03 03:03:54.091645 +03

• rmgr: WAL len (rec/tot): 80/ 106, tx: 0, lsn: 7/33B66340, prev 7/33B66318, desc:
CHECKPOINT_ONLINE redo 7/33B66340; tli 1; prev tli 1; fpw true; xid 0/389746; oid 198532; multi 1; offset 0; oldest
xid 1866 in DB 129795; oldest multi 1 in DB 90123; oldest/newest commit timestamp xid: 388437/389745; oldest
running xid 0; online

• rmgr: WAL len (rec/tot): 0/ 24, tx: 0, lsn: 7/33B663B0, prev 7/33B66340, desc: SWITCH

•

•

Postgres London – July 2019
WAL: (Almost) everything you want to know

40

pg_waldump

• rmgr: XLOG len (rec/tot): 30/ 30, tx: 0, lsn: 0/0CE268C8, prev 0/0CE26890, desc: NEXTOID 26914

rmgr: Storage len (rec/tot): 42/ 42, tx: 0, lsn: 0/0CE268E8, prev 0/0CE268C8, desc: CREATE
base/14012/18722

rmgr: Heap len (rec/tot): 54/ 1338, tx: 1829, lsn: 0/0CE26918, prev 0/0CE268E8, desc: INSERT off 7,
blkref #0: rel 1663/14012/1247 blk 15 FPW

rmgr: Btree len (rec/tot): 53/ 6393, tx: 1829, lsn: 0/0CE26E58, prev 0/0CE26918, desc: INSERT_LEAF off
315, blkref #0: rel 1663/14012/2703 blk 2 FPW

rmgr: Standby len (rec/tot): 42/ 42, tx: 1833, lsn: 0/0CE57300, prev 0/0CE572C8, desc: LOCK xid 1833 db
14012 rel 18731

rmgr: Heap len (rec/tot): 54/ 54, tx: 1833, lsn: 0/0CE57330, prev 0/0CE57300, desc: DELETE off 14
KEYS_UPDATED , blkref #0: rel 1663/14012/1247 blk 15

rmgr: Heap len (rec/tot): 54/ 54, tx: 1833, lsn: 0/0CE57368, prev 0/0CE57330, desc: DELETE off 26
KEYS_UPDATED , blkref #0: rel 1663/14012/2608 blk 62

rmgr: Standby len (rec/tot): 42/ 42, tx: 0, lsn: 0/0CE573A0, prev 0/0CE57368, desc: LOCK xid 1833 db
14012 rel 18731

Postgres London – July 2019
WAL: (Almost) everything you want to know

41

pg_waldump

• pg_waldump -r list
• src/include/access/rmgrlist.h

• pg_waldump -r sequence…

• Parameter changes:

• rmgr: XLOG len (rec/tot): 50/ 50, tx: 0, lsn: 2/9410C4A8, prev
2/9410C438, desc: PARAMETER_CHANGE max_connections=100
max_worker_processes=8 max_prepared_xacts=0 max_locks_per_xact=64
wal_level=replica wal_log_hints=off track_commit_timestamp=off

Postgres London – July 2019
WAL: (Almost) everything you want to know

42

WAL: Point-In-Time Recovery (PITR)

• A base backup (pg_basebackup!) and the WAL files are needed.

• WAL files must be sequentially complete – otherwise PITR won’t
be finished.

• “Roll-forward recovery”

Postgres London – July 2019
WAL: (Almost) everything you want to know

43

WAL: Point-In-Time Recovery (PITR)

• PITR: Replaying WAL files on base backups, until recovery
target.

• recovery_target_{time, xid, name, lsn}

• If not specified, all archived WAL files are replayed.

• recovery.conf and backup_label (R.I.P as of v12) : Enters
recovery mode.

• restore_command,
recovery_target_XXX,recovery_target_inclusive

• backup_label: Also includes checkpoint location (starting point of
recovery)

• Almost like regular recovery process (WAL replay)

• Up to recovery_target_XXX is replayed.

Postgres London – July 2019
WAL: (Almost) everything you want to know

44

WAL: Point-In-Time Recovery (PITR)

• After recovery process, timelineID is increased by 1 (also
physical WAL file name is also increased by 1)

• A .history file is created.

• $ cat 00000003.history
1 403F/58000098 no recovery target specified

2 4048/43000098 before 2018-08-28 11:13:21.124512+03

“WAL files were replayed until the given time above, and their
replay location is 4048/43000098.

Postgres London – July 2019
WAL: (Almost) everything you want to know

45

Full page writes

● A WAL record cannot be replayed on a page which is corrupted during
bgwriter and/or checkpointer, because of hardware failure, OS crash,
kernel failure, etc.

– A failure can cause parts of old data still remain on the data page!

● Full page writes IYF

– Header data + entire page as a WAL record during the first change
of each page after every checkpoint: Backup block / full page image

– During replay, backup block overwrites data.

● Enabled by default.

– Please turn it off, if you want to throw a lot of money to PostgreSQL
support companies. Otherwise, don’t do so ;)

Postgres London – July 2019
WAL: (Almost) everything you want to know

46

Full page writes

● Increases WAL I/O

● PostgreSQL writes header data + the entire page as WAL record, when
a page changes after every checkpoint.

– Increasing checkpoint_timeout and / or max_wal_size helps.

● Low values has a side effect: More WAL activity, per above.-

– Full-page image, backup block.

● PostgreSQL can even recover itself from write failures (not hw failures,
though)

Postgres London – July 2019
WAL: (Almost) everything you want to know

47

Full page writes

● Also needed by:

– pg_basebackup, if you want to take backups from the standby
node.

– pg_rewind

● Increasing wal_buffers will help in busy environments.

Postgres London – July 2019
WAL: (Almost) everything you want to know

48

WAL parameters

• wal_level: Minimal, replica or logical
• Must be > minimal for archiver to be able to run

• fsync : Always on, please.

• synchronous_commit: May lose some of the latest transactions
• Server returns success to the client

• Server waits a bit to flush the data to durable storage.

• Less risky than fsync

• wal_sync_method : fdatasync is usually better. Use
pg_test_fsync for testing.

Postgres London – July 2019
WAL: (Almost) everything you want to know

49

WAL parameters

• wal_log_hints: When this value is set to on , the server writes the entire content of
each disk page to WAL after a checkpoint and during the first modification of that
page, even for non-critical modifications of so-called hint bits.

• wal_compression: off by default. Less WAL files, more CPU overhead.

• wal_buffers: -1: Automatic tuning of wal buffers: 1/32 of shared_buffers (not less than
64kB or no more than 16 MB (1 WAL file)

• wal_writer_delay : Rounds between WAL writer flushes WAL.

• wal_writer_flush_after: New in 9.6

Postgres London – July 2019
WAL: (Almost) everything you want to know

50

Questions, comments?

Postgres London – July 2019
WAL: (Almost) everything you want to know

51

Photo time!

@CheerPostgreSQL

© 2013 EnterpriseDB Corporation. All rights reserved. 52

WAL for DBAs – Everything you
want to know
Devrim Gündüz

Principal Systems Engineer @ EnterpriseDB

devrim.gunduz@EnterpriseDB.com

Twitter : @DevrimGunduz

mailto:devrim.gunduz@EnterpriseDB.com

	Presentation Title
	Layout: Title and Content, Arial 32pt
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

