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● Who is this guy?

– Using Red Hat (and then Fedora) since 1996.

– Using PostgreSQL since 1998.
● Cheers for 21st year!

– Responsible for PostgreSQL YUM (RHEL, CentOS, 
Fedora) and Zypp (SLES) repositories.

– Fedora and EPEL packager.

– Working at EnterpriseDB since 2011.

– Living in London, UK.

– The Guy With The PostgreSQL Tattoo! (Please discard 
imitations)

About me
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● The largest PostgreSQL conference in Europe.

● Milan, Italy.

● 15 October: Training day.

● 16-18 October: Conference

● Registration is open: https://2019.pgconf.eu/registration

● CfP is also open: https://2019.pgconf.eu/callforpapers/

PGConf.EU 2019
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Please tweet:

#PostgreSQL

#PostgresLondon

Please follow:

@Postgres_London

@PostgreSQL

@PGConfEU

Social Media
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#BlameMagnus

@BlameMagnus

Alternative Hashtag and account
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             (Did you tweet? Thanks!)

Social Media
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Agenda (in random order)

• What is WAL?

• What does it include?

• How to read it?

• What about wal_level ?

• Replication and WAL

• Backup and WAL

• PITR and WAL

• Full page writes!

• Other topics
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Please do not delete WAL files 
manually.

Please.

Before we actually start:
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Please do not delete WAL files 
manually.

Please.
Please.

Before we actually start:
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Please do not delete WAL files 
manually.

Please.
Please.

PLEASE.

Before we actually start:
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What is WAL?

• Write Ahead Log:
• Logging of transactions

• a.k.a. xlog in ancient times (transaction log),

• 16 MB in most of the installations (can be configured, --with-
wal-segsize)

• v11+: initdb has a --wal-segsize parameter
• Initdb --wal-segsize=64 ←in MB 

• 8 kB page size (can be configured, --with-wal-blocksize 
during configure)
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What is WAL?

• Write Ahead Log:
• Logging of transactions

• a.k.a. xlog in ancient times (transaction log),

• 16 MB in most of the installations (can be configured, --with-
wal-segsize)

• v11+: initdb has a --wal-segsize parameter
• Initdb --wal-segsize=64 ←in MB 

• 8 kB page size (can be configured, --with-wal-blocksize 
during configure)

• pg_xlog (<= 9.6)→ pg_wal (10+)

• Because people deleted files under “log” directory.
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What is WAL?

• Designed to prevent data loss in most of the situations
• OS crash, hardware failure, PostgreSQL crash.
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What is WAL?

• Designed to prevent data loss in most of the situations
• OS crash, hardware failure, PostgreSQL crash.

• Write transactions are written to WAL
• Before transaction result is sent to the client
• Data files are not changed on each transaction
• Performance benefit
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What is WAL?

• Designed to prevent data loss in most of the situations
• OS crash, hardware failure, PostgreSQL crash.

• Write transactions are written to WAL
• Before transaction result is sent to the client
• Data files are not changed on each transaction
• Performance benefit

• Should be kept in a separate drive.
• Initdb, or symlink
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What is WAL?

• Built-in feature

• Life before WAL (not before B.C., though):
• All changes go to durable storage (eventually), but:

• Data page is loaded to shared_buffers
• Changes are made there
• Dirty buffers!

• But not timely!

• Crash → Data loss!
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What is WAL?

• Life after WAL:
• Almost all of the “modifications” are “logged” to WAL files 

(WAL record)

• Even if the transaction is aborted (ROLLBACK)
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What is WAL?

• Life after WAL:
• Almost all “modifications” are “logged” to WAL files (WAL 

record)

• Even if the transaction is aborted (ROLLBACK)
• wal_buffers → WAL segments (files)
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What is WAL?

• Life after WAL:
• Almost all “modifications” are “logged” to WAL files (WAL 

record)

• Even if the transaction is aborted (ROLLBACK)
• wal_buffers → WAL segments (files)

• Ability to recover data after a crash!
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What is WAL?

• Life after WAL:
• Almost all “modifications” are “logged” to WAL files (WAL 

record)

• Even if the transaction is aborted (ROLLBACK)
• wal_buffers → WAL segments (files)

• Ability to recover data after a crash

• Checkpoint!
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Where is it used?

• Transaction logging!

• Replication

• PITR

• REDO
• Sequentially availability is a must.

• REDO vs UNDO

• No REDO for temp tables and unlogged tables.
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Shared Buffers, Bgwriter and checkpointer

• shared_buffers in PostgreSQL
• Dirty buffers

• This is where transactions are performed

• Side effect: Causes inconsistency(?) on durable storage, due 
to dirty buffers.

• Bgwriter: Background writer
• LRU

• Checkpointer
• Pushing all dirty buffers to durable storage

• Triggered automatically or manually

• Backends may also write data to heap
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WAL: LSN

• Log Sequence Number
• Position of the record in WAL file.

• Provides uniqueness for each WAL record.

• 64-bit integer (historically 2x32-bit) (We’ll need this info soon)

• Per docs: “Pointer to a location in WAL file”

• LSN: Block ID + Segment ID (See next slides)

• During recovery, LSN on the page and LSN in the WAL file are 
compared.

• The larger one wins.
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WAL file naming

• 24 chars, hex.
• 1st 8 chars: timelineID

• 00000001 is the timelineID created by initdb
• 2nd 8 chars: Block ID

• 3rd 8 chars:  Segment ID

• 000000010000000000000001 → 000000010000000000000002

•  … 0000000100000000000000FF → 
000000010000000100000000

• ...and 0000000100000001000000FF → 
000000010000000200000000
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WAL file naming

• 24 chars, hex.
• 1st 8 chars: timelineID

• 00000001 is the timelineID created by initdb
• 2nd 8 chars: Block ID

• 3rd 8 chars:  Segment ID

• 000000010000000000000001 → 000000010000000000000002

•  … 0000000100000000000000FF → 
000000010000000100000000

• ...and 0000000100000001000000FF → 
000000010000000200000000
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WAL file naming

• Default WAL file: 16 MB
• Location within a WAL file can be expressed using 24 bits 

(because 2^24 = 16MB). 

• Take 64, split it into 32 + 32,  subtract 24 from the second 32, 
you get 8, which is the number of bits from the low-order 32-
bit integer that have to be stored in the WAL file name.  

• In hexadecimal, each character represents 4 bits, so to find 
the number of characters required to represent 8 bits, we 
take 8 / 4 = 2.  And 2 is the number of 2 F’s in the previous 
slide.
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● Probably not the last one in ls list!

WAL: Finding current WAL file

• postgres=# SELECT * from pg_current_wal_lsn();

pg_current_wal_location 
--------------------------
40E6/2C85AC10

• postgres=# SELECT pg_walfile_name(‘40E6/2C85AC10');
pg_walfile_name
--------------------------
00000003000040E60000002C

So:

• postgres=# SELECT pg_walfile_name(pg_current_wal_lsn());

pg_walfile_name 
--------------------------
00000003000040E60000002C
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Checkpoint, and pg_control

● As soon as the checkpoint starts, REDO point is stored in shared buffers.

● A WAL record is created referencing checkpoint start, and it is first written to WAL 
buffers, and then eventually to pg_control.

– pg_control is under $PGDATA/global

● Unlike bgwriter, checkpointer writes all of the data in the shared_buffers to 
durable storage.

● PostgreSQL knows the latest REDO point, by looking at pg_control file.

● More will come with full page writes.
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Checkpoint, and pg_control

● pg_controldata (before v11):

   Latest checkpoint location:           40E7/E43B16B8

   Prior checkpoint location:            40E7/D8689090

● pg_controldata (v11+):

   Latest checkpoint location:           40E7/E43B16B8

   They are LSN.
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Checkpoint, and pg_control

● pg_controldata (before v11):

   Latest checkpoint location:           40E7/E43B16B8

   Prior checkpoint location:            40E7/D8689090

● pg_controldata (v11+):

   Latest checkpoint location:           40E7/E43B16B8

   They are LSN.

● When checkpoint is completed, pg_control is updated with the position of 
checkpoint.
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Checkpoint, and pg_control

● pg_controldata (before v11):

   Latest checkpoint location:           40E7/E43B16B8

   Prior checkpoint location:            40E7/D8689090

● pg_controldata (v11+):

   Latest checkpoint location:           40E7/E43B16B8

   They are LSN.

● When checkpoint is completed, pg_control is updated with the position of 
checkpoint.

● After checkpoint, old WAL files are either recycled, or removed.
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Checkpoint, and pg_control

● pg_controldata (before v11):

   Latest checkpoint location:           40E7/E43B16B8

   Prior checkpoint location:            40E7/D8689090

● pg_controldata (v11+):

   Latest checkpoint location:           40E7/E43B16B8

   They are LSN.

● When checkpoint is completed, pg_control is updated with the position of 
checkpoint.

● After checkpoint, old WAL files are either recycled, or removed.

● An “estimation” is done while recycling (based on previous checkpoint cycles)
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Checkpoint, and pg_control

● pg_controldata (before v11):

   Latest checkpoint location:           40E7/E43B16B8

   Prior checkpoint location:            40E7/D8689090

● pg_controldata (v11+):

   Latest checkpoint location:           40E7/E43B16B8

   They are LSN.

● When checkpoint is completed, pg_control is updated with the position of 
checkpoint.

● After checkpoint, old WAL files are either recycled, or removed.

● An “estimation” is done while recycling (based on previous checkpoint cycles)

● 9.5+: In minimum, min_wal_size WAL files are always recycled for future usage
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pg_control and REDO

● postmaster reads pg_control on startup.

/usr/pgsql-12/bin/pg_controldata -D /var/lib/pgsql/12/data | grep state

– “Database cluster state”:

● starting up

● shut down

● shut down in recovery

● shutting down

● in crash recovery

● in archive recovery

● in production

● If pg_control says “in production”, but db server is not running, then this instance 
is eligible for a recovery!
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pg_control and REDO

● pg_control is the critical piece

– Should not be corrupted

– Per docs: “...theoretically a weak spot”, but no issues reported yet!

– There is a way to recover, but not implemented yet.

● REDO: All WAL files must be sequentially available for complete recovery.

● UNDO: Not available in Postgres yet.

– See:

●  https://github.com/EnterpriseDB/zheap/

●  https://wiki.postgresql.org/wiki/Zheap 
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Moving to the new WAL

● A WAL segment may be full

● PostgreSQL archiver will switch to the new WAL, if PostgreSQL reaches 
archive_timeout value.

● DBA issues pg_switch_wal() function.
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WAL: Archiving

• Replication, backup, PITR

• archive_mode

• archive_command

• archive_timeout
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WAL management

• Use PostgreSQL’s internal tools to manage them
• pg_archivecleanup

• pg_resetwal

• pg_waldump

• ....
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pg_waldump

• We are all human.

• Use pg_waldump, if you want to see contents of WAL files

• rmgr --help to get list of all resource names, -f for follow, -n for limit. -z for stats.

• pg_waldump -n 20 -f  000000010000000700000033 

• rmgr: Heap        len (rec/tot):      3/    59, tx:     389744, lsn: 7/33B66228, prev 7/33B661F0, desc: INSERT+INIT off 1, 
blkref #0: rel 1663/13326/190344 blk 0

• rmgr: Heap        len (rec/tot):      3/    59, tx:     389744, lsn: 7/33B66268, prev 7/33B66228, desc: INSERT off 2, blkref 
#0: rel 1663/13326/190344 blk 0

• rmgr: Transaction len (rec/tot):      8/    34, tx:     389744, lsn: 7/33B662A8, prev 7/33B66268, desc: COMMIT 2017-02-
03 03:03:49.482223 +03

• rmgr: Heap        len (rec/tot):     14/    69, tx:     389745, lsn: 7/33B662D0, prev 7/33B662A8, desc: HOT_UPDATE off 
1 xmax 389745 ; new off 3 xmax 0, blkref #0: rel 1663/13326/190344 blk 0

• rmgr: Transaction len (rec/tot):      8/    34, tx:     389745, lsn: 7/33B66318, prev 7/33B662D0, desc: COMMIT 2017-02-
03 03:03:54.091645 +03

• rmgr: WAL        len (rec/tot):     80/   106, tx:          0, lsn: 7/33B66340, prev 7/33B66318, desc: 
CHECKPOINT_ONLINE redo 7/33B66340; tli 1; prev tli 1; fpw true; xid 0/389746; oid 198532; multi 1; offset 0; oldest 
xid 1866 in DB 129795; oldest multi 1 in DB 90123; oldest/newest commit timestamp xid: 388437/389745; oldest 
running xid 0; online

• rmgr: WAL        len (rec/tot):      0/    24, tx:          0, lsn: 7/33B663B0, prev 7/33B66340, desc: SWITCH 

•

•



Postgres London – July 2019
WAL: (Almost) everything you want to know

40

pg_waldump

• rmgr: XLOG        len (rec/tot):     30/    30, tx:          0, lsn: 0/0CE268C8, prev 0/0CE26890, desc: NEXTOID 26914

rmgr: Storage     len (rec/tot):     42/    42, tx:          0, lsn: 0/0CE268E8, prev 0/0CE268C8, desc: CREATE 
base/14012/18722

rmgr: Heap        len (rec/tot):     54/  1338, tx:       1829, lsn: 0/0CE26918, prev 0/0CE268E8, desc: INSERT off 7, 
blkref #0: rel 1663/14012/1247 blk 15 FPW

rmgr: Btree       len (rec/tot):     53/  6393, tx:       1829, lsn: 0/0CE26E58, prev 0/0CE26918, desc: INSERT_LEAF off 
315, blkref #0: rel 1663/14012/2703 blk 2 FPW

---

rmgr: Standby     len (rec/tot):     42/    42, tx:       1833, lsn: 0/0CE57300, prev 0/0CE572C8, desc: LOCK xid 1833 db 
14012 rel 18731 

rmgr: Heap        len (rec/tot):     54/    54, tx:       1833, lsn: 0/0CE57330, prev 0/0CE57300, desc: DELETE off 14 
KEYS_UPDATED , blkref #0: rel 1663/14012/1247 blk 15

rmgr: Heap        len (rec/tot):     54/    54, tx:       1833, lsn: 0/0CE57368, prev 0/0CE57330, desc: DELETE off 26 
KEYS_UPDATED , blkref #0: rel 1663/14012/2608 blk 62

rmgr: Standby     len (rec/tot):     42/    42, tx:          0, lsn: 0/0CE573A0, prev 0/0CE57368, desc: LOCK xid 1833 db 
14012 rel 18731 
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pg_waldump

• pg_waldump -r list
• src/include/access/rmgrlist.h

• pg_waldump -r sequence…

• Parameter changes: 

• rmgr: XLOG        len (rec/tot):     50/    50, tx:          0, lsn: 2/9410C4A8, prev 
2/9410C438, desc: PARAMETER_CHANGE max_connections=100 
max_worker_processes=8 max_prepared_xacts=0 max_locks_per_xact=64 
wal_level=replica wal_log_hints=off track_commit_timestamp=off
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WAL: Point-In-Time Recovery (PITR)

• A base backup (pg_basebackup!) and the WAL files are needed.

• WAL files must be sequentially complete – otherwise PITR won’t 
be finished.

• “Roll-forward recovery”
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WAL: Point-In-Time Recovery (PITR)

• PITR: Replaying WAL files on base backups, until recovery 
target.

• recovery_target_{time, xid, name, lsn}

• If not specified, all archived WAL files are replayed.

• recovery.conf and backup_label (R.I.P as of v12) : Enters 
recovery mode.

• restore_command, 
recovery_target_XXX,recovery_target_inclusive

• backup_label: Also includes checkpoint location (starting point of 
recovery)

• Almost like regular recovery process (WAL replay)

• Up to recovery_target_XXX is replayed.
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WAL: Point-In-Time Recovery (PITR)

• After recovery process, timelineID is increased by 1 (also 
physical WAL file name is also increased by 1) 

• A .history file is created.

• $ cat 00000003.history
1 403F/58000098 no recovery target specified

2 4048/43000098 before 2018-08-28 11:13:21.124512+03

“WAL files were replayed until the given time above, and their 
replay location is 4048/43000098. 
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Full page writes

● A WAL record cannot be replayed on a page which is corrupted during 
bgwriter and/or checkpointer, because of hardware failure, OS crash, 
kernel failure, etc.

– A failure can cause parts of old data still remain on the data page!

● Full page writes IYF

– Header data + entire page as a WAL record during the first change 
of each page after every checkpoint: Backup block / full page image

– During replay, backup block overwrites data.

● Enabled by default.

– Please turn it off, if you want to throw a lot of money to PostgreSQL 
support companies. Otherwise, don’t do so ;) 
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Full page writes

● Increases WAL I/O

● PostgreSQL writes header data + the entire page as WAL record, when 
a page changes after every checkpoint.

– Increasing checkpoint_timeout and / or max_wal_size helps.

● Low values has a side effect: More WAL activity, per above.-

– Full-page image, backup block.

● PostgreSQL can even recover itself from write failures (not hw failures, 
though)
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Full page writes

● Also needed by:

–  pg_basebackup, if you want to take backups from the standby 
node.

– pg_rewind

● Increasing wal_buffers will help in busy environments.
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WAL parameters

• wal_level: Minimal, replica or logical
• Must be > minimal for archiver to be able to run

• fsync : Always on, please.

• synchronous_commit: May lose some of the latest transactions
• Server returns success to the client

• Server waits a bit to flush the data to durable storage.

• Less risky than fsync

• wal_sync_method : fdatasync is usually better. Use 
pg_test_fsync for testing.     
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WAL parameters

• wal_log_hints: When this value is set to on , the server writes the entire content of 
each disk page to WAL after a checkpoint and during the first modification of that 
page, even for non-critical modifications of so-called hint bits.

• wal_compression: off by default. Less WAL files, more CPU overhead.

• wal_buffers: -1: Automatic tuning of wal buffers: 1/32 of shared_buffers  (not less than 
64kB or no more than 16 MB (1 WAL file)

• wal_writer_delay : Rounds between WAL  writer flushes WAL.

• wal_writer_flush_after: New in 9.6  
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Questions, comments?
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Photo time!

@CheerPostgreSQL 
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