
VACUUM: From your head
down to your shoes
(©Buddy Guy)
Devrim Gündüz
Postgres Expert @ EDB

14 March 2024
SCaLe 21x

1

Self introduction

● PostgreSQL Major Contributor
● Responsible for the PostgreSQL RPM

repos (Red Hat, Rocky, AlmaLinux, Fedora
and SLES)

● Fedora and Rocky Linux contributor
● PostgreSQL community member
● Postgres expert @ EDB
● London, UK.

2

Nowadays:

3

Agenda

● MVCC: The basics
● Data snapshots
● VACUUM
● VACUUM processing
● FREEZE
● VACUUM tuning
● VACUUM FULL

4

“*”

5

6

“*”

● Basic question first ;)
● What does * sign represent in SELECT * FROM t1;

What is MVCC?

7

8

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

9

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers to not block writers, writer do not block readers”.

10

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers to not block writers, writer do not block readers”.
● Multiple version of the same row may occur

○ New versions are created during updates
○ Uncommitted transactions
○ Dead tuples (see next slides)

11

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers to not block writers, writer do not block readers”.
● Multiple version of the same row may occur

○ New versions are created during updates
○ Uncommitted transactions
○ Dead tuples (see next slides)

● Side effect: VACUUM
○ We will get there ;)

12

Transaction id

● “txid”

13

Transaction id

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is being discussed

14

Transaction id

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is under review

○ “Circle”
■ 2 billion in the past, 2 billion in the future

15

Transaction id

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is being discussed

○ “Circle”
■ 2 billion in the past, 2 billion in the future

○ 3 special (reserved) txids
■ 0: Invalid
■ 1: Bootstrap
■ 2: Frozen

16

Transaction id

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()

17

Transaction id

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()
● Stored in the header of each row

○ xmin: INSERT
○ xmax: UPDATE or DELETE

■ (0, when this not apply)

18

INSERT, DELETE and UPDATE

● INSERT
○ Insertion is done to the first available space

■ xmin: set to the txid
■ xmax: 0

19

INSERT, DELETE and UPDATE

20

INSERT, DELETE and UPDATE

● DELETE
○ Logical deletion
○ Long lasting transactions?
○ xmax is set to the txid
○ → dead tuple!

21

INSERT, DELETE and UPDATE

First session:

22

INSERT, DELETE and UPDATE

Another session:

23

INSERT, DELETE and UPDATE

● UPDATE:
○ “Expensive” operation
○ INSERT + DELETE
○ Dead tuple (as a part of deletion)

24

INSERT, DELETE and UPDATE

25

INSERT, DELETE and UPDATE

Another session:

26

INSERT, DELETE and UPDATE

● Consider huge side effects of excessive
DELETEs (and UPDATEs)

27

Comboid, cmin, cmax

● pre-8.3: cmin and cmax were separate
● Per comboid.c:

○ To reduce the header size, cmin and cmax are now overlayed
in the same field in the header. That usually works because you rarely
insert and delete a tuple in the same transaction, and we don't need
either field to remain valid after the originating transaction exits.

https://doxygen.postgresql.org/combocid_8c_source.html

https://doxygen.postgresql.org/combocid_8c_source.html

Data snapshots

28

29

Data snapshots

● Data snapshots
○ Not a physical snapshot

30

Data snapshots

● Data snapshots
○ Not a physical snapshot

● Isolation
○ Created at the beginning of the transaction
○ Contains committed data
○ Uncommitted data is ignored.

31

Data snapshots

● Data snapshots
○ Not a physical snapshot

● Isolation
○ Created at the beginning of the transaction
○ Contains committed data
○ Uncommitted data is ignored.

● Also determines VACUUM-able rows or
non-VACUUM-able rows

32

Data snapshots

● Long running transactions
○ pg_dump

33

Data snapshots

● Long running transactions
○ pg_dump

● Some parameters:
○ idle_in_transaction_session_timeout (disabled by default)
○ old_snapshot_threshold (disabled by default)

Visibility

34

35

Visibility

● Tuple visibility
○ xmin,xmax

36

Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot

37

Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot
● Visibility definition:

○ That row version is already committed before the transaction start time
■ Could be INSERT, or UPDATE

○ UPDATE waiting?

38

Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot
● Visibility definition:

○ That row version is already committed before the transaction start time
■ Could be INSERT, or UPDATE

○ UPDATE waiting?
● Tip: Commit time is not stored.

39

Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot
● Visibility definition:

○ That row version is already committed before the transaction start time
■ Could be INSERT, or UPDATE

○ UPDATE waiting?
● Tip: Commit time is not stored.
● Tip: Rollback segments are not available in PostgreSQL

○ No chance for seeing a past consistent state (lively).

VACUUM

40

41

VACUUM

● A must-do maintenance process for PostgreSQL

42

VACUUM

● A must-do maintenance process for PostgreSQL
● Cleaning up no-more-needed dead tuples

43

VACUUM

● A must-do maintenance process for PostgreSQL
● Cleaning up no-more-needed dead tuples
● Can run against:

○ A single table
○ A few tables
○ A database
○ A few databases
○ All databases

44

VACUUM

● A must-do maintenance process for PostgreSQL
● Cleaning up no-more-needed dead tuples
● Can run against:

○ A single table
○ A few tables
○ A database
○ A few databases
○ All databases

● Two main tasks:
○ Removing dead tuples
○ Freezing transaction ids

45

VACUUM

● Does not block most of the queries
○ Concurrent vacuums to the same table is not allowed
○ Cannot create index (concurrently or regular)
○ Cannot create trigger
○ Cannot refresh MV
○ Cannot add/remove columns from table
○ Cannot drop table ;)

46

VACUUM

● Does not block most of the queries
○ Concurrent vacuums to the same table is not allowed
○ Cannot create index (concurrently or regular)
○ Cannot create trigger
○ Cannot refresh MV
○ Cannot add/remove columns from table
○ Cannot drop table ;)

● I/O
○ Creates I/O (we will get there)

47

VACUUM tasks

● Removes dead tuples
○ Clean up dead tuples
○ Also cleans up index pages (pointing to the dead tuples

48

VACUUM tasks

● Removes dead tuples
○ Clean up dead tuples
○ Also cleans up index pages (pointing to the dead tuples

● Freezing
○ Freeze “old” transaction ids
○ Update some catalog tables

49

VACUUM tasks

● Removes dead tuples
○ Clean up dead tuples
○ Also cleans up index pages (pointing to the dead tuples

● Freezing
○ Freeze “old” transaction ids
○ Update some catalog tables

● Update VM and FSM

50

VACUUM tasks

● Removes dead tuples
○ Clean up dead tuples
○ Also cleans up index pages (pointing to the dead tuples

● Freezing
○ Freeze “old” transaction ids
○ Update some catalog tables

● Update VM and FSM
● Update statistics (optional)

51

VACUUM process

● VACUUMing is done per table, per page.

52

VACUUM process

● VACUUMing is done per table, per page.
○ Postgres doesn’t allow multiple VACUUMs

concurrently on a single relation
● Scan pages for dead tuples

53

VACUUM process

● VACUUMing is done per table, per page.
○ Postgres doesn’t allow multiple VACUUMs

concurrently on a single relation
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples

54

VACUUM process

● VACUUMing is done per table, per page.
○ Postgres doesn’t allow multiple VACUUMs

concurrently on a single relation
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples
● Update Visibility Map (VM)

and Free Space Map (FSM

55

VACUUM process

● VACUUMing is done per table, per page.
○ Postgres doesn’t allow multiple VACUUMs

concurrently on a single relation
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples
● Update Visibility Map (VM)

and Free Space Map (FSM)
● Truncate last page(s) of the table

○ If the page is empty

56

VACUUM process

● VACUUMing is done per table, per page.
○ Postgres doesn’t allow multiple VACUUMs

concurrently on a single relation
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples
● Update Visibility Map (VM)

and Free Space Map (FSM)
● Truncate last page(s) of the table

○ If the page is empty
● Update stats, update catalog tables

57

VACUUM process

● VACUUMing is done per table, per page.
○ Postgres doesn’t allow multiple VACUUMs

concurrently on a single relation
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples
● Update Visibility Map (VM)

and Free Space Map (FSM)
● Truncate last page(s) of the table

○ If the page is empty
● Update stats, update catalog tables

58

VACUUM: First phase

● Scan the table, and create list of the dead tuples.

59

VACUUM: First phase

● Scan the table, and create list of the dead tuples.
● Read data into the memory (I/O)
● Freeze tuples (we will get there)

60

VACUUM: First phase

● Scan the table, and create list of the dead tuples.
● Read data into the memory (I/O)
● Freeze tuples (we will get there)
● Cleanup of index tuples

(which point to the dead and removed tuples)

61

VACUUM: First phase

● Scan the table, and create list of the dead tuples.
● Read data into the memory (I/O)
● Freeze tuples (we will get there)
● Cleanup of index tuples

(which point to the dead and removed tuples)
● NOTE: Dead tuple cleanup is not done at this phase.

62

VACUUM: First phase

● Some parameters:
○ Maintenance_work_mem

■ Can also be set per-session
■ VACUUM can utilize up to 1 GB

 (matches on-disk data file size limit)

63

VACUUM: First phase

● Some parameters:
○ Maintenance_work_mem

■ Can also be set per-session
■ VACUUM can utilize up to 1 GB

 (matches on-disk data file size limit)

64

VACUUM: Second phase

● Removal of dead tuples

65

VACUUM: Second phase

● Removal of dead tuples
● FSM and VM are updated (per page)

66

VACUUM: Second phase

● Removal of dead tuples
● FSM and VM are updated (per page)
● Repairs fragmentation (per page)

67

VACUUM: Third phase

● Final phase

68

VACUUM: Third phase

● Final phase
● Index cleanup

69

VACUUM: Third phase

● Final phase
● Index cleanup
● Updates stats and system catalogs (per table)

70

VACUUM: Third phase

● Final phase
● Index cleanup
● Updates stats and system catalogs (per table)
● Truncation (if applicable)

71

VACUUM: Ring buffers

● Buffer Access Strategy (as of v16+)
○ saves shared_buffers
○ Uses them circularly
○ https://www.postgresql.org/docs/current/glossary.html#GLOSSARY-BUFFER-ACCESS-STRATEGY

● Pre-16: Does not use buffer pool
○ temporary
○ small

● Helps keep shared buffers “hot”
● 256 kB

○ Per docs (src/backend/storage/buffer/README):
○ “For sequential scans, a 256 KB ring is used.

That's small enough to fit in L2 cache,
which makes transferring pages from OS cache
to shared buffer cache efficient.”

https://www.postgresql.org/docs/current/glossary.html#GLOSSARY-BUFFER-ACCESS-STRATEGY

72

VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

73

VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

● FREEZE
○ frozen txid

74

VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

● FREEZE
○ frozen txid

● Scans all pages (and files, when the table spans more than one file)

75

VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

● FREEZE
○ frozen txid

● Scans all pages (and files, when the table spans more than one file)
● Specially reserved txid: 2

○ “Always older than other transaction IDs”
○ “Always visible”

76

VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

● FREEZE
○ frozen txid

● Scans all pages (and files, when the table spans more than one file)
● Specially reserved txid: 2

○ “Always older than other transaction IDs”
○ “Always visible”

● vacuum_freeze_min_age

77

VACUUM: FREEZE

● “ Limited number (N = 2^32) of XID's required to do
vacuum freeze to prevent wraparound every N/2
transactions.

● This causes performance degradation due to the
need to read and rewrite all not yet frozen pages
tables while being

(Extracted from 64-bit xid patch)

VACUUM
parameters

78

79

VACUUM parameters

● FULL [boolean]
● FREEZE [boolean]
● VERBOSE [boolean]
● ANALYZE [boolean]
● DISABLE_PAGE_SKIPPING [boolean]
● SKIP_LOCKED [boolean]
● INDEX_CLEANUP { AUTO | ON | OFF }
● PROCESS_MAIN [boolean]
● PROCESS_TOAST [boolean]

80

VACUUM parameters

● TRUNCATE [boolean]
● PARALLEL integer

● v16+:
● SKIP_DATABASE_STATS [boolean]

○ skip updating the database-wide statistics about oldest unfrozen XIDs
● ONLY_DATABASE_STATS [boolean]

○ Just update database statistics
● BUFFER_USAGE_LIMIT size

○ vacuum_buffer_usage_limit
○ Max 16 GB

VACUUM and
WAL

81

82

WAL

● Logging of transactions

83

WAL

● Logging of transactions
● All “modifications” are logged

84

WAL

● Logging of transactions
● All “modifications” are logged
● VACUUM -> page modifications -> WAL

○ Crash recovery
○ Also required for replica servers

85

WAL

● Logging of transactions
● All “modifications” are logged
● VACUUM -> page modifications -> WAL

○ Crash recovery
○ Also required for replica servers

● So, VACUUM causes extra I/O pressure on WAL

86

WAL

● Logging of transactions
● All “modifications” are logged
● VACUUM -> page modifications -> WAL

○ Crash recovery
○ Also required for replica servers

● So, VACUUM causes extra I/O pressure on WAL
○ backups!

VACUUM and
replication

87

88

VACUUM and replication

● Long running (SELECT) queries on standby

89

VACUUM and replication

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary

90

VACUUM and replication

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in
● Standby: “ERROR: canceling statement due to

conflict with recovery”

91

VACUUM and replication

92

VACUUM and replication

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in
● Standby: “ERROR: canceling statement due to

conflict with recovery”
● Parameter: hot_standby_feedback

93

VACUUM and replication

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in
● Standby: “ERROR: canceling statement due to

conflict with recovery”
● Parameter: hot_standby_feedback
● Side effect: VACUUMs will delay, bloat will increase.

VACUUM
performance

94

95

VACUUM performance

● vacuum_cost_delay (0, disabled by default)

96

VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)

97

VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)
● vacuum_cost_page_miss (2 by default)

98

VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)
● vacuum_cost_page_miss (2 by default)
● vacuum_cost_page_dirty (20 by default)

99

VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)
● vacuum_cost_page_miss (2 by default)
● vacuum_cost_page_dirty (20 by default)
● vacuum_cost_limit (200 by default)

100

VACUUM performance

● Changing vacuum_cost_delay will result in less
I/O over the time, but then VACUUM will take
longer.

101

VACUUM performance

● Changing vacuum_cost_delay will result in less
I/O over the time, but then VACUUM will take
longer.

● This is the way to throttle VACUUM process.

Autovacuum

102

103

AUTOVACUUM

● Since PostgreSQL 8.1

104

AUTOVACUUM

● Since PostgreSQL 8.1
● Kicks off autovacuum/autoanalyze, per parameters.

105

AUTOVACUUM

● Since PostgreSQL 8.1
● Kicks off autovacuum/autoanalyze, per parameters.
● Kicks off to prevent transaction ID wraparound.

106

AUTOVACUUM

● Since PostgreSQL 8.1
● Kicks off autovacuum/autoanalyze, per parameters.
● Kicks off to prevent transaction ID wraparound.
● On by default.

107

AUTOVACUUM

● Since PostgreSQL 8.1
● Kicks off autovacuum/autoanalyze, per parameters.
● Kicks off to prevent transaction ID wraparound.
● On by default.

○ Do not turn it off!

108

AUTOVACUUM: Is everything cool?

● No.

109

AUTOVACUUM: Is everything cool?

● No.
● Murphy rule: Autovacuum will kick of during peak hours.

110

AUTOVACUUM: Is everything cool?

● No.
● Murphy rule: Autovacuum will kick of during peak hours
● May / will prioritize busy tables

○ Some tables may / will be untouched

111

AUTOVACUUM: Is everything cool?

● No.
● Murphy rule: Autovacuum will kick of during peak hours
● May / will prioritize busy tables

○ Some tables may / will be untouched
● Anti-wraparound vacuum cannot be stopped.

○ Will start even if autovacuum is turned off.

112

AUTOVACUUM: Is everything cool?

● More workers -> more I/O

113

AUTOVACUUM: Is everything cool?

● More workers -> more I/O
● More workers -> more RAM usage

(maintenance_work_mem)

114

AUTOVACUUM: Is everything cool?

● More workers -> more I/O
● More workers -> more RAM usage

(maintenance_work_mem)
● Cancels itself when a higher lock level is required

by another transaction
○ Some tables may never be autovacuumed.

115

AUTOVACUUM: parameters

● autovacuum_work_mem = -1
● log_autovacuum_min_duration = 10min
● autovacuum = on
● autovacuum_max_workers = 3
● autovacuum_naptime = 1min
● autovacuum_vacuum_threshold = 50
● autovacuum_vacuum_insert_threshold = 1000
● autovacuum_analyze_threshold = 50

116

AUTOVACUUM: parameters

● autovacuum_vacuum_scale_factor = 0.2
● autovacuum_vacuum_insert_scale_factor = 0.2
● autovacuum_analyze_scale_factor = 0.1
● autovacuum_freeze_max_age = 200000000
● autovacuum_multixact_freeze_max_age = 400000000
● autovacuum_vacuum_cost_delay = 2ms
● autovacuum_vacuum_cost_limit = -1

117

Autovacuum: Tuning per table

ALTER TABLE t1
 SET (autovacuum_vacuum_scale_factor = 0.05,
 autovacuum_vacuum_threshold = 200000,
 autovacuum_analyze_scale_factor = 0.1,
 autovacuum_analyze_threshold = 200000);

● Can be used to customize autovac settings
for some tables

VACUUM and
autovacuum

118

119

VACUUM and autovacuum

● Can live together.

120

VACUUM and autovacuum

● Can live together.
● Tuning both of them will help overall performance.

121

VACUUM and autovacuum

● Can live together.
● Tuning both of them will help overall performance.
● We suggest using cron-based VACUUM.

122

VACUUM and autovacuum

● Can live together.
● Tuning both of them will help overall performance.
● We suggest using cron-based VACUUM.

○ This will very likely prevent peak-time autovacuum accidents.

VACUUM FULL

123

124

VACUUM FULL

125

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.

126

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.

127

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table

128

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table
● Requires ACCESS EXCLUSIVE LOCK

○ The only transaction that runs against the table

129

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table
● Requires ACCESS EXCLUSIVE LOCK

○ The only transaction that runs against the table
● Requires disk space similar to the table size.

130

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table
● Requires ACCESS EXCLUSIVE LOCK

○ The only transaction that runs against the table
● Requires disk space similar to the table size.
● Downtime!

131

VACUUM FULL: Non-blocking Alternative

● Some alternatives exist

132

VACUUM FULL: Non-blocking Alternative

● Some alternatives exist

133

VACUUM FULL: Non-blocking Alternative

● Some alternatives exist
○ pg_repack
○ pg_squeeze (cron!)

134

VACUUM VERBOSE

● INFO: finished vacuuming "onlinedps.pg_toast.pg_toast_20508": index scans: 0
● pages: 0 removed, 0 remain, 0 scanned (100.00% of total)
● tuples: 0 removed, 0 remain, 0 are dead but not yet removable
● removable cutoff: 30184655, which was 3 XIDs old when operation ended
● new relfrozenxid: 30184655, which is 30180246 XIDs ahead of previous value
● new relminmxid: 16, which is 15 MXIDs ahead of previous value
● index scan not needed: 0 pages from table (100.00% of total) had 0 dead item identifiers

removed
● I/O timings: read: 0.051 ms, write: 0.000 ms
● avg read rate: 32.150 MB/s, avg write rate: 0.000 MB/s
● buffer usage: 19 hits, 1 misses, 0 dirtied
● WAL usage: 1 records, 0 full page images, 188 bytes
● system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

135

pg_stat_progress_vacuum

pid | 18303
datid | 19323
datname | foobar
relid | 19870
phase | scanning heap
heap_blks_total | 370044
Heap_blks_scanned | 13443
heap_blks_vacuumed | 0
Index_vacuum_count | 0
max_dead_tuples | 107682804
num_dead_tuples | 149101

136

THANK YOU

136

Now it is time for questions!

VACUUM: From your head
down to your shoes
(©Buddy Guy)
Devrim Gündüz
Postgres Expert @ EDB

14 March 2024
SCaLe 21x

137

