
©EDB 2024 — ALL RIGHTS RESERVED.

Know the less known: A PostgreSQL Glossary

Devrim Gündüz
Postgres Expert @ EDB
Berlin PostgreSQL Meetup - July Edition



©EDB 2024 — ALL RIGHTS RESERVED.

Self introduction

▪ PostgreSQL Major Contributor
▪ Responsible for PostgreSQL RPM repos (Red Hat, Rocky,  AlmaLinux, 

Fedora and SLES)
▪ Fedora and Rocky Linux contributor
▪ PostgreSQL community member
▪ Postgres expert @ EDB
▪ “The guy with the PostgreSQL tattoo"
▪ London, UK.



©EDB 2024 — ALL RIGHTS RESERVED.

…and also:



©EDB 2024 — ALL RIGHTS RESERVED.

DJ’ing!



©EDB 2024 — ALL RIGHTS RESERVED.



©EDB 2024 — ALL RIGHTS RESERVED.

Agenda

Last time it took 90 mins to 
complete this talk, but…



©EDB 2024 — ALL RIGHTS RESERVED.

It is really a coincidence…



©EDB 2024 — ALL RIGHTS RESERVED.



©EDB 2024 — ALL RIGHTS RESERVED.

Again, coincidence:

▪ Thanks Anastasia for covering many parts of my talk :-)



©EDB 2024 — ALL RIGHTS RESERVED.

Again, coincidence:

▪ Thanks Anastasia for covering many parts of my talk :-)
▪ I had to rewrite the talk



©EDB 2024 — ALL RIGHTS RESERVED.

Agenda

▪ “*”
▪ MVCC
▪ Glossary
▪ WAL
▪ LSN



©EDB 2024 — ALL RIGHTS RESERVED.

“*”



©EDB 2024 — ALL RIGHTS RESERVED.

“*”

▪ Basic question first ;)
▪ What does * mean in SELECT * FROM t1;



©EDB 2024 — ALL RIGHTS RESERVED.

What’s MVCC?



©EDB 2024 — ALL RIGHTS RESERVED.

What’s MVCC?

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation



©EDB 2024 — ALL RIGHTS RESERVED.

What’s MVCC?

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers do not block writers,
  writers do not block readers”.



©EDB 2024 — ALL RIGHTS RESERVED.

What’s MVCC?

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers do not block writers,
  writers do not block readers”.

● Multiple version of the same row may occur
○ New versions are created during updates
○ Uncommitted transactions
○ Dead tuples (see next slides)

● Side effect: VACUUM



©EDB 2024 — ALL RIGHTS RESERVED.

What’s MVCC?

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers do not block writers,
  writers do not block readers”.

● Multiple version of the same row may occur
○ New versions are created during updates
○ Uncommitted transactions
○ Dead tuples (see next slides)



©EDB 2024 — ALL RIGHTS RESERVED.

Glossary



©EDB 2024 — ALL RIGHTS RESERVED.

xact

“Transaction”



©EDB 2024 — ALL RIGHTS RESERVED.

Transaction ID

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is being discussed

○ “Circle” 
■ 2 billion in the past, 2 billion in the future



©EDB 2024 — ALL RIGHTS RESERVED.

Transaction ID

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is being discussed

○ “Circle”
■ 2 billion in the past, 2 billion in the future

○ 3 special (reserved) txids
■ 0:  Invalid
■ 1: Bootstrap (used during initdb)
■ 2: Frozen (always visible, always active)



©EDB 2024 — ALL RIGHTS RESERVED.

Transaction ID

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()



©EDB 2024 — ALL RIGHTS RESERVED.

ctid

● “The physical location of the row version within its table.”



©EDB 2024 — ALL RIGHTS RESERVED.

ctid

● “The physical location of the row version within its table.”
● “block number” and “location of the tuple in the block”



©EDB 2024 — ALL RIGHTS RESERVED.

ctid

● “The physical location of the row version within its table.”
● “block number” and “location of the tuple in the block”
● Do not depend on it



©EDB 2024 — ALL RIGHTS RESERVED.

ctid

● “The physical location of the row version within its table.”
● “block number” and “location of the tuple in the block”
● Do not depend on it
● UPDATE or VACUUM FULL will change it!



©EDB 2024 — ALL RIGHTS RESERVED.

xmin

● “The identity (transaction ID) of the inserting transaction for this row 
version.



©EDB 2024 — ALL RIGHTS RESERVED.

xmax

● “The identity (transaction ID) of the deleting or updating transaction”



©EDB 2024 — ALL RIGHTS RESERVED.

xmax

● “The identity (transaction ID) of the deleting or updating transaction”
○  or zero for an undeleted row version.



©EDB 2024 — ALL RIGHTS RESERVED.

xmax

● “The identity (transaction ID) of the deleting or updating transaction”
○  or zero for an undeleted row version.

● May be non-zero in a visible row version



©EDB 2024 — ALL RIGHTS RESERVED.

xmax

● “The identity (transaction ID) of the deleting or updating transaction”
○  or zero for an undeleted row version.

● May be non-zero in a visible row version
○ Deleting transaction has not been committed *yet*



©EDB 2024 — ALL RIGHTS RESERVED.

xmax

● “The identity (transaction ID) of the deleting or updating transaction”
○  or zero for an undeleted row version.

● May be non-zero in a visible row version
○ Deleting transaction has not been committed *yet*
○ Deleting transaction was rolled back



©EDB 2024 — ALL RIGHTS RESERVED.

cmin

● The command identifier (starting at zero) within the inserting 
transaction.



©EDB 2024 — ALL RIGHTS RESERVED.

cmax

● The command identifier within the deleting transaction



©EDB 2024 — ALL RIGHTS RESERVED.

cmax

● The command identifier within the deleting transaction
○ or zero.



©EDB 2024 — ALL RIGHTS RESERVED.

Back to txid

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()



©EDB 2024 — ALL RIGHTS RESERVED.

Back to txid

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()
● Stored in the header of each row



©EDB 2024 — ALL RIGHTS RESERVED.

Back to txid

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()
● Stored in the header of each row

○ xmin: INSERT



©EDB 2024 — ALL RIGHTS RESERVED.

Back to txid

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()
● Stored in the header of each row

○ xmin: INSERT
○ xmax: UPDATE or DELETE 



©EDB 2024 — ALL RIGHTS RESERVED.

Back to txid

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()
● Stored in the header of each row

○ xmin: INSERT
○ xmax: UPDATE or DELETE 

■ (0, when this not apply)



©EDB 2024 — ALL RIGHTS RESERVED.

INSERT, DELETE and UPDATE

● INSERT
○ Insertion is done to the first available space

■ xmin: set to the txid
■ xmax: 0



©EDB 2024 — ALL RIGHTS RESERVED.

INSERT, UPDATE and DELETE



©EDB 2024 — ALL RIGHTS RESERVED.

INSERT, UPDATE AND DELETE

● DELETE
○ Logical deletion
○ Long lasting transactions?
○ xmax is set to the txid
○ → dead tuple!



©EDB 2024 — ALL RIGHTS RESERVED.

INSERT, UPDATE AND DELETE

Session one:



©EDB 2024 — ALL RIGHTS RESERVED.

INSERT, UPDATE AND DELETE

Session two:



©EDB 2024 — ALL RIGHTS RESERVED.

INSERT, UPDATE AND DELETE



©EDB 2024 — ALL RIGHTS RESERVED.

INSERT, UPDATE AND DELETE

Another session:



©EDB 2024 — ALL RIGHTS RESERVED.

pg_xact

● “Transaction metadata logs”
● Per docs: “Subdirectory containing

 transaction commit status data”
● Formerly pg_clog
● “bloat”



©EDB 2024 — ALL RIGHTS RESERVED.

datfrozenxid

 All about VACUUM

● All transaction IDs before this one have been replaced with a 
permanent transaction ID in this database. 



©EDB 2024 — ALL RIGHTS RESERVED.

datfrozenxid

 All about VACUUM

● All transaction IDs before this one have been replaced with a 
permanent transaction ID in this database. 

● Used to track whether the database needs to be vacuumed in order to 
prevent transaction ID wraparound or to allow pg_xact to be shrunk.



©EDB 2024 — ALL RIGHTS RESERVED.

datfrozenxid

 All about VACUUM

● All transaction IDs before this one have been replaced with a 
permanent transaction ID in this database. 

● Used to track whether the database needs to be vacuumed in order to 
prevent transaction ID wraparound or to allow pg_xact to be shrunk.

● It is the minimum of the per-table pg_class.relfrozenxid values



©EDB 2024 — ALL RIGHTS RESERVED.

datfrozenxid

● SELECT datname, age(datfrozenxid) FROM pg_database;



©EDB 2024 — ALL RIGHTS RESERVED.

multixact

● Used to support row locking by multiple transactions



©EDB 2024 — ALL RIGHTS RESERVED.

multixact

● Used to support row locking by multiple transactions
● Tuple headers: 24 bytes

○ Space is limited



©EDB 2024 — ALL RIGHTS RESERVED.

multixact

● Used to support row locking by multiple transactions
● Tuple headers: 24 bytes

○ Space is limited
● Lock information  is stored in “multixact ID”

(multiple transaction id) 
(remember: xact = transaction)



©EDB 2024 — ALL RIGHTS RESERVED.

multixact

● Used to support row locking by multiple transactions
● Tuple headers: 24 bytes

○ Space is limited
● Lock information  is stored in “multixact ID”

(multiple transaction id) 
(remember: xact = transaction)

● Concurrent locking of a row



©EDB 2024 — ALL RIGHTS RESERVED.

multixact

● Used to support row locking by multiple transactions
● Tuple headers: 24 bytes

○ Space is limited
● Lock information  is stored in “multixact ID”

(multiple transaction id) 
(remember: xact = transaction)

● Concurrent locking of a row
● pg_multixact



©EDB 2024 — ALL RIGHTS RESERVED.

multixact ID

● Implemented as 32-bit counter
● Very much like txid
● $PGDATA/pg_multixact/members: Holds the list of

 members in each multixact
● VACUUM: Will remove old files from

pg_multixact/members and pg_multixact/offsets



©EDB 2024 — ALL RIGHTS RESERVED.

relfrozenxid

● Per docs: “All transaction IDs before this one
have been replaced with a permanent (“frozen”) transaction ID in this 
table”

● Tracks vacuum needs to prevent txid wraparound
and allowing shrinking of pg_xact



©EDB 2024 — ALL RIGHTS RESERVED.

WAL



©EDB 2024 — ALL RIGHTS RESERVED.

WAL

● Write Ahead Log
● Logging of transactions
● Designed to prevent data loss in most of the situations
● OS crash, hardware failure, PostgreSQL crash.
● Built-in feature



©EDB 2024 — ALL RIGHTS RESERVED.

WAL

● Transaction logging!
● Replication
● PITR
● REDO
● Sequentially availability is a must.
● REDO vs UNDO
● No REDO for temp tables and unlogged tables.



©EDB 2024 — ALL RIGHTS RESERVED.

LSN



©EDB 2024 — ALL RIGHTS RESERVED.

LSN

● Log Sequence Number



©EDB 2024 — ALL RIGHTS RESERVED.

LSN

● Log Sequence Number
● Position of the record in WAL file.



©EDB 2024 — ALL RIGHTS RESERVED.

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.



©EDB 2024 — ALL RIGHTS RESERVED.

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.
● 64-bit integer (historically 2x32-bit)



©EDB 2024 — ALL RIGHTS RESERVED.

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.
● 64-bit integer (historically 2x32-bit)
● Per docs: “Pointer to a location in WAL file”



©EDB 2024 — ALL RIGHTS RESERVED.

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.
● 64-bit integer (historically 2x32-bit)
● Per docs: “Pointer to a location in WAL file”
● LSN: Block ID + Segment ID



©EDB 2024 — ALL RIGHTS RESERVED.

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.
● 64-bit integer (historically 2x32-bit)
● Per docs: “Pointer to a location in WAL file”
● LSN: Block ID + Segment ID
● During recovery, LSN on the page and LSN in the WAL file are 

compared.



©EDB 2024 — ALL RIGHTS RESERVED.

LSN

● Log Sequence Number
● Position of the record in WAL file.
● Provides uniqueness for each WAL record.
● 64-bit integer (historically 2x32-bit)
● Per docs: “Pointer to a location in WAL file”
● LSN: Block ID + Segment ID
● During recovery, LSN on the page and LSN in the WAL file are 

compared.
● The larger one wins.



©EDB 2024 — ALL RIGHTS RESERVED.

Now it is time for questions!



©EDB 2024 — ALL RIGHTS RESERVED.

Know the less known: A PostgreSQL Glossary

Devrim Gündüz
Postgres Expert @ EDB
Berlin PostgreSQL Meetup - July Edition


