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Self introduction
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PostgreSQL Major Contributor

~edora and SLES)

-edora and Rocky Linux contributor
PostgreSQL community member
Postgres expert @ EDB

“The guy with the PostgreSQL tattoo’

L ondon, UK.

Responsible for PostgreSQL RPM repos (Red Hat, Rocky, AlmaLinux,
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...and also:




DJ’ing!
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L ast time it took 90 mins to
complete this talk, but...




It is really a coincidence...




DI 16.07. POOR BOYZ CLUB




Again, coincidence:

» Thanks Anastasia for covering many parts of my talk :-)
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Again, coincidence:

- Thanks Anastasia for covering many parts of my talk :-)
= | had to rewrite the talk
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Agenda
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MVCC
Glossary
WAL
| SN
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Basic question first ;)

« What does * mean in SELECT * FROM t1;
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What's MVCC?
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What's MVCC?

e Multi Version Concurrency Control
o Implementation of concurrency in Postgres
o Snapshot isolation
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What's MVCC?

e Multi Version Concurrency Control
o Implementation of concurrency in Postgres
o Snapshot isolation

e “Readers do not block writers,
writers do not block readers”.
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What's MVCC?

e Multi Version Concurrency Control
o Implementation of concurrency in Postgres
o Snapshot isolation
e “Readers do not block writers,
writers do not block readers”.
e Multiple version of the same row may occur
o New versions are created during updates
o Uncommitted transactions
o Dead tuples (see next slides)
e Side effect: VACUUM
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What's MVCC?

e Multi Version Concurrency Control
o Implementation of concurrency in Postgres
o Snapshot isolation
e “Readers do not block writers,
writers do not block readers”.
e Multiple version of the same row may occur
o New versions are created during updates
o Uncommitted transactions
o Dead tuples (see next slides)
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Glossary




Xact

“Transaction”

w ©EDB 2024 — ALL RIGHTS RESERVED.
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Transaction |D

o “txid"
e Unique identifier
o 32-bits, ~ 4 billion
m 64-bits txid is being discussed
o “Circle”
m 2 billion in the past, 2 billion in the future

~
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Transaction |D

o “txid”
e Unique identifier
o 32-bits, ~ 4 billion
m 64-bits txid is being discussed
o “Circle”
m 2 billion in the past, 2 billion in the future
- 3 special (reserved) txids
m O: Invalid
m 1: Bootstrap (used during initdb)
m 2: Frozen (always visible, always active)
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Transaction |D

e SELECT

o Utilizes “virtual txid”
m txid_current_if_assigned()
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ctid

e “The physical location of the row version within its table.”
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C

ctid

e “The physical location of the row version within its table.”
e “block number” and “location of the tuple in the block”
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ctid

e “The physical location of the row version within its table.”
e “block number” and “location of the tuple in the block”
e Do not depend on it
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ctid

“The physical location of the row version within its table.”
“block number” and “location of the tuple in the block”

Do not depend on it
UPDATE or VACUUM FULL will change it!
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C

XmMin

e “The identity (transaction ID) of the inserting transaction for this row
version.
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C

XMax

e “The identity (transaction ID) of the deleting or updating transaction”

O
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C

XMax

e “The identity (transaction ID) of the deleting or updating transaction”
o or zero for an undeleted row version.
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C

XMax

e “The identity (transaction ID) of the deleting or updating transaction”
o or zero for an undeleted row version.
e May be non-zero in a visible row version
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XMax

e “The identity (transaction ID) of the deleting or updating transaction”
o or zero for an undeleted row version.

e May be non-zero in a visible row version
o Deleting transaction has not been committed *yet*
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XMax

e “The identity (transaction ID) of the deleting or updating transaction”
o or zero for an undeleted row version.

e May be non-zero in a visible row version
o Deleting transaction has not been committed *yet*
o Deleting transaction was rolled back
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C

cmin

e The command identifier (starting at zero) within the inserting
transaction.
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CmaxXx

e The command identifier within the deleting transaction
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CmaxXx

e The command identifier within the deleting transaction
O Or zero.
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Back to txid

e SELECT
o Utilizes “virtual txid”
m txid_current_if_assigned()
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Back to txid

e SELECT
o Utilizes “virtual txid"
m txid_current_if_assigned()
e Stored in the header of each row
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Back to txid

e SELECT
o Utilizes “virtual txid"
m txid_current_if_assigned()
e Stored in the header of each row
o xmin: INSERT
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Back to txid

e SELECT
o Utilizes “virtual txid"
m txid_current_if_assigned()
e Stored in the header of each row
o xmin: INSERT
o xmax: UPDATE or DELETE
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Back to txid

e SELECT

o Utilizes “virtual txid”
m txid_current_if_assigned()
e Stored in the header of each row

o xmin: INSER]
o xmax: UPDAT

'E or DELETE

m (0,whent

nis not apply)
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INSERT, DELETE and UPDATE

e INSERT
o Insertion is done to the first available space
m xXmin: set to the txid
m Xmax:0
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INSERT, UPDATE and DELETE

[postgres] # CREATE TABLE t1 (cl 1int);
CREATE TABLE

[postgres] # INSERT INTO tl1 VALUES (1),(2);
INSERT © 2

[postgres] # INSERT INTO tl1 VALUES (3);
INSERT 0 1

[postgres] # INSERT INTO tl1 VALUES (4);
INSERT 0 1

[postgres] # SELECT cmin, cmax, xmin, xmax, ctid,* FROM t1;
cmin | cmax | xmin | xmax | ctid

(0,1)
161031 (0,2)
161032 (0,3)
161033 (0,4)

-~
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INSERT, UPDATE AND DELETE

e DELETE
o Logical deletion
o Long lasting transactions?
o Xmakx is set to the txid
o — dead tuple!
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INSERT, UPDATE AND DELETE

Session one:

[postgres] # BEGIN ;

BEGIN

[postgres] # DELETE FROM tl1 WHERE cl=1;

DELETE 1

[postgres] # SELECT cmin, cmax, xmin, xmax, ctid,* FROM t1;

cmin | cmax | xmin | xmax | ctid
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INSERT, UPDATE AND DELETE

Session two:

[postgres] # SELECT cmin, cmax, xmin, xmax, ctid,*x FROM t1;
Xmax ctid
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INSERT, UPDATE AND DELETE

[postgres] # BEGIN

BEGIN

[postgres] # UPDATE t1 SET c1=20 WHERE cl1=2;

UPDATE 1

[postgres] # SELECT cmin, cmax, xmin, xmax, ctid,* FROM tl1;

cmin | cmax | xmin | xmax | ctid

161032 | (0,3)
161033 | (0,4)
161035 | (0,5)
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INSERT, UPDATE AND DELETE

Another session:

[postgres] # SELECT cmin, cmax, xmin, xmax, ctid,* FROM t1;
cmin | cmax | xmin Xmax

161031 | 161035 (0,2)

161032 | 0] (0,3)
)

161033 | (0,4)
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pg_Xact

e “Transaction metadata logs”

e Per docs: “Subdirectory containing
transaction commit status data”

e Formerly pg_clog

e “bloat”
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datfrozenxid

All about VACUUM

e All transaction IDs before this one have been replaced with a
permanent transaction ID in this database.

O

EEEEEEEEEEEEEEEEEEEEEEEEEEE



datfrozenxid

All about VACUUM

e All transaction IDs before this one have been replaced with a
permanent transaction ID in this database.

e Used to track whether the database needs to be vacuumed in order to
prevent transaction ID wraparound or to allow pg_xact to be shrunk.
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N

datfrozenxid

All about VACUUM

e All transaction IDs before this one have been replaced with a
permanent transaction ID in this database.

e Used to track whether the database needs to be vacuumed in order to
prevent transaction ID wraparound or to allow pg_xact to be shrunk.
e Itisthe minimum of the per-table pg_class.relfrozenxid values
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datfrozenxid

e SELECT datname, age(datfrozenxid) FROM pg_database;
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multixact

e Used to support row locking by multiple transactions
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multixact

e Used to support row locking by multiple transactions
e Tuple headers: 24 bytes
o Space is limited
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N

multixact

e Used to support row locking by multiple transactions
e Tuple headers: 24 bytes

o Space is limited

e Lock information is stored in “multixact ID”
(multiple transaction id)
(remember: xact = transaction)
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N

multixact

Used to support row locking by multiple transactions
e Tuple headers: 24 bytes

o Space is limited
e Lock information is stored in “multixact ID”

(multiple transaction id)

(remember: xact = transaction)
e Concurrent locking of a row

EEEEEEEEEEEEEEEEEEEEEEEEEEE



multixact

Used to support row locking by multiple transactions
e Tuple headers: 24 bytes

o Space is limited
e Lock information is stored in “multixact ID”

(multiple transaction id)

(remember: xact = transaction)
e Concurrent locking of a row

pg_multixact
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multixact ID

e Implemented as 32-bit counter

e Very much like txid
e SPGDATA/pg_multixact/members: Holds the list of

members in each multixact
e VACUUM: Will remove old files from
pg_multixact/members and pg_multixact/offsets
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relfrozenxid

e Per docs: “All transaction IDs before this one
have been replaced with a permanent (“frozen”) transaction ID in this

table”
e Tracks vacuum needs to prevent txid wraparound

and allowing shrinking of pg_xact
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WAL

Write Ahead Log

Logging of transactions

Designed to prevent data loss in most of the situations
OS crash, hardware failure, PostgreSQL crash.

Built-in feature
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WAL

Transaction logging!

Replication

P|ITR

REDO

Sequentially availability is a must.

REDO vs UNDO

No REDO for temp tables and unlogged tables.
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LSN

e Log Sequence Number
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LSN

e Log Sequence Number
e Position of the record in WAL file.
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LSN

e Log Sequence Number
e Position of the record in WAL file.
e Provides uniqueness for each WAL record.

©EDB 2024 — ALL RIGHTS RESERVED.



N

LSN

_0og Sequence Number

Position of the record in WAL file.

Provides uniqueness for each WAL record.
64-bit integer (historically 2x32-bit)
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LSN

_0og Sequence Number

Position of the record in WAL file.

Provides uniqueness for each WAL record.
64-bit integer (historically 2x32-bit)

Per docs: “Pointer to a location in WAL file”
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N

LSN

_0og Sequence Number

Position of the record in WAL file.

Provides uniqueness for each WAL record.
64-bit integer (historically 2x32-bit)

Per docs: “Pointer to a location in WAL file”
LSN: Block ID + Segment ID
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LSN

_0og Sequence Number

Position of the record in WAL file.

Provides uniqueness for each WAL record.

64-bit integer (historically 2x32-bit)

Per docs: “Pointer to a location in WAL file”

LSN: Block ID + Segment ID

During recovery, LSN on the page and LSN in the WAL file are
compared.
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LSN

_0og Sequence Number

Position of the record in WAL file.

Provides uniqueness for each WAL record.

64-bit integer (historically 2x32-bit)

Per docs: “Pointer to a location in WAL file”

LSN: Block ID + Segment ID

During recovery, LSN on the page and LSN in the WAL file are
compared.

e The larger one wins.
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Now it is time for questions!
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