» . EDB ,
Postgres for the Al Generation

Know the less known: A PostgreSQ

Devrim Gunduz
Postgres Expert @ EDB
Berlin PostgreSQL Meetup - July Edition

©EDB 2024 — ALL RIGHTS RESERVED.

Self introduction

J

PostgreSQL Major Contributor

~edora and SLES)

-edora and Rocky Linux contributor
PostgreSQL community member
Postgres expert @ EDB

“The guy with the PostgreSQL tattoo’

L ondon, UK.

Responsible for PostgreSQL RPM repos (Red Hat, Rocky, AlmaLinux,

EEEEEEEEEEEEEEEEEEEEEEEEEEE

...and also:

DJ’ing!

C

o,

L ast time it took 90 mins to
complete this talk, but...

It is really a coincidence...

DI 16.07. POOR BOYZ CLUB

Again, coincidence:

» Thanks Anastasia for covering many parts of my talk :-)

(®®

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Again, coincidence:

- Thanks Anastasia for covering many parts of my talk :-)
= | had to rewrite the talk

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Agenda

{{*l;

MVCC
Glossary
WAL
| SN

(®®

EEEEEEEEEEEEEEEEEEEEEEEEEEE

H*"

Basic question first ;)

« What does * mean in SELECT * FROM t1;

o0

What's MVCC?

C

What's MVCC?

e Multi Version Concurrency Control
o Implementation of concurrency in Postgres
o Snapshot isolation

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

What's MVCC?

e Multi Version Concurrency Control
o Implementation of concurrency in Postgres
o Snapshot isolation

e “Readers do not block writers,
writers do not block readers”.

O

EEEEEEEEEEEEEEEEEEEEEEEEEEE

What's MVCC?

e Multi Version Concurrency Control
o Implementation of concurrency in Postgres
o Snapshot isolation
e “Readers do not block writers,
writers do not block readers”.
e Multiple version of the same row may occur
o New versions are created during updates
o Uncommitted transactions
o Dead tuples (see next slides)
e Side effect: VACUUM

N

EEEEEEEEEEEEEEEEEEEEEEEEEEE

What's MVCC?

e Multi Version Concurrency Control
o Implementation of concurrency in Postgres
o Snapshot isolation
e “Readers do not block writers,
writers do not block readers”.
e Multiple version of the same row may occur
o New versions are created during updates
o Uncommitted transactions
o Dead tuples (see next slides)

N

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Glossary

Xact

“Transaction”

w ©EDB 2024 — ALL RIGHTS RESERVED.

C

Transaction |D

o “txid"
e Unique identifier
o 32-bits, ~ 4 billion
m 64-bits txid is being discussed
o “Circle”
m 2 billion in the past, 2 billion in the future

~
~_/

~

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Transaction |D

o “txid”
e Unique identifier
o 32-bits, ~ 4 billion
m 64-bits txid is being discussed
o “Circle”
m 2 billion in the past, 2 billion in the future
- 3 special (reserved) txids
m O: Invalid
m 1: Bootstrap (used during initdb)
m 2: Frozen (always visible, always active)

oo

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Transaction |D

e SELECT

o Utilizes “virtual txid”
m txid_current_if_assigned()

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

ctid

e “The physical location of the row version within its table.”

©EDB 2024 — ALL RIGHTS RESERVED.

C

ctid

e “The physical location of the row version within its table.”
e “block number” and “location of the tuple in the block”

~

EEEEEEEEEEEEEEEEEEEEEEEEEEE

ctid

e “The physical location of the row version within its table.”
e “block number” and “location of the tuple in the block”
e Do not depend on it

N

EEEEEEEEEEEEEEEEEEEEEEEEEEE

ctid

“The physical location of the row version within its table.”
“block number” and “location of the tuple in the block”

Do not depend on it
UPDATE or VACUUM FULL will change it!

~

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

XmMin

e “The identity (transaction ID) of the inserting transaction for this row
version.

O

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

XMax

e “The identity (transaction ID) of the deleting or updating transaction”

O

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

XMax

e “The identity (transaction ID) of the deleting or updating transaction”
o or zero for an undeleted row version.

~

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

XMax

e “The identity (transaction ID) of the deleting or updating transaction”
o or zero for an undeleted row version.
e May be non-zero in a visible row version

©EDB 2024 — ALL RIGHTS RESERVED.

~

XMax

e “The identity (transaction ID) of the deleting or updating transaction”
o or zero for an undeleted row version.

e May be non-zero in a visible row version
o Deleting transaction has not been committed *yet*

N

EEEEEEEEEEEEEEEEEEEEEEEEEEE

XMax

e “The identity (transaction ID) of the deleting or updating transaction”
o or zero for an undeleted row version.

e May be non-zero in a visible row version
o Deleting transaction has not been committed *yet*
o Deleting transaction was rolled back

N

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

cmin

e The command identifier (starting at zero) within the inserting
transaction.

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

CmaxXx

e The command identifier within the deleting transaction

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

CmaxXx

e The command identifier within the deleting transaction
O Or zero.

©EDB 2024 — ALL RIGHTS RESERVED.

Back to txid

e SELECT
o Utilizes “virtual txid”
m txid_current_if_assigned()

EEEEEEEEEEEEEEEEEEEEEEEEEEE

OO

Back to txid

e SELECT
o Utilizes “virtual txid"
m txid_current_if_assigned()
e Stored in the header of each row

EEEEEEEEEEEEEEEEEEEEEEEEEEE

OO

Back to txid

e SELECT
o Utilizes “virtual txid"
m txid_current_if_assigned()
e Stored in the header of each row
o xmin: INSERT

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

O

Back to txid

e SELECT
o Utilizes “virtual txid"
m txid_current_if_assigned()
e Stored in the header of each row
o xmin: INSERT
o xmax: UPDATE or DELETE

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

~

Back to txid

e SELECT

o Utilizes “virtual txid”
m txid_current_if_assigned()
e Stored in the header of each row

o xmin: INSER]
o xmax: UPDAT

'E or DELETE

m (0,whent

nis not apply)

EEEEEEEEEEEEEEEEEEEEEEEEEEE

INSERT, DELETE and UPDATE

e INSERT
o Insertion is done to the first available space
m xXmin: set to the txid
m Xmax:0

EEEEEEEEEEEEEEEEEEEEEEEEEEE

INSERT, UPDATE and DELETE

[postgres] # CREATE TABLE t1 (cl 1int);
CREATE TABLE

[postgres] # INSERT INTO tl1 VALUES (1),(2);
INSERT © 2

[postgres] # INSERT INTO tl1 VALUES (3);
INSERT 0 1

[postgres] # INSERT INTO tl1 VALUES (4);
INSERT 0 1

[postgres] # SELECT cmin, cmax, xmin, xmax, ctid,* FROM t1;
cmin | cmax | xmin | xmax | ctid

(0,1)
161031 (0,2)
161032 (0,3)
161033 (0,4)

-~

©EDB 2024 — ALL RIGHTS RESERVED.

INSERT, UPDATE AND DELETE

e DELETE
o Logical deletion
o Long lasting transactions?
o Xmakx is set to the txid
o — dead tuple!

-~

INSERT, UPDATE AND DELETE

Session one:

[postgres] # BEGIN ;

BEGIN

[postgres] # DELETE FROM tl1 WHERE cl=1;

DELETE 1

[postgres] # SELECT cmin, cmax, xmin, xmax, ctid,* FROM t1;

cmin | cmax | xmin | xmax | ctid

©EDB 2024 — ALL RIGHTS RESERVED.

-~

INSERT, UPDATE AND DELETE

Session two:

[postgres] # SELECT cmin, cmax, xmin, xmax, ctid,*x FROM t1;
Xmax ctid

©EDB 2024 — ALL RIGHTS RESERVED.

-~

INSERT, UPDATE AND DELETE

[postgres] # BEGIN

BEGIN

[postgres] # UPDATE t1 SET c1=20 WHERE cl1=2;

UPDATE 1

[postgres] # SELECT cmin, cmax, xmin, xmax, ctid,* FROM tl1;

cmin | cmax | xmin | xmax | ctid

161032 | (0,3)
161033 | (0,4)
161035 | (0,5)

©EDB 2024 — ALL RIGHTS RESERVED.

-~

INSERT, UPDATE AND DELETE

Another session:

[postgres] # SELECT cmin, cmax, xmin, xmax, ctid,* FROM t1;
cmin | cmax | xmin Xmax

161031 | 161035 (0,2)

161032 | 0] (0,3)
)

161033 | (0,4)

©EDB 2024 — ALL RIGHTS RESERVED.

C

~

pg_Xact

e “Transaction metadata logs”

e Per docs: “Subdirectory containing
transaction commit status data”

e Formerly pg_clog

e “bloat”

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

datfrozenxid

All about VACUUM

e All transaction IDs before this one have been replaced with a
permanent transaction ID in this database.

O

EEEEEEEEEEEEEEEEEEEEEEEEEEE

datfrozenxid

All about VACUUM

e All transaction IDs before this one have been replaced with a
permanent transaction ID in this database.

e Used to track whether the database needs to be vacuumed in order to
prevent transaction ID wraparound or to allow pg_xact to be shrunk.

N

EEEEEEEEEEEEEEEEEEEEEEEEEEE

N

datfrozenxid

All about VACUUM

e All transaction IDs before this one have been replaced with a
permanent transaction ID in this database.

e Used to track whether the database needs to be vacuumed in order to
prevent transaction ID wraparound or to allow pg_xact to be shrunk.
e Itisthe minimum of the per-table pg_class.relfrozenxid values

EEEEEEEEEEEEEEEEEEEEEEEEEEE

datfrozenxid

e SELECT datname, age(datfrozenxid) FROM pg_database;

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

multixact

e Used to support row locking by multiple transactions

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

multixact

e Used to support row locking by multiple transactions
e Tuple headers: 24 bytes
o Space is limited

O

EEEEEEEEEEEEEEEEEEEEEEEEEEE

N

multixact

e Used to support row locking by multiple transactions
e Tuple headers: 24 bytes

o Space is limited

e Lock information is stored in “multixact ID”
(multiple transaction id)
(remember: xact = transaction)

EEEEEEEEEEEEEEEEEEEEEEEEEEE

N

multixact

Used to support row locking by multiple transactions
e Tuple headers: 24 bytes

o Space is limited
e Lock information is stored in “multixact ID”

(multiple transaction id)

(remember: xact = transaction)
e Concurrent locking of a row

EEEEEEEEEEEEEEEEEEEEEEEEEEE

multixact

Used to support row locking by multiple transactions
e Tuple headers: 24 bytes

o Space is limited
e Lock information is stored in “multixact ID”

(multiple transaction id)

(remember: xact = transaction)
e Concurrent locking of a row

pg_multixact

N

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

multixact ID

e Implemented as 32-bit counter

e Very much like txid
e SPGDATA/pg_multixact/members: Holds the list of

members in each multixact
e VACUUM: Will remove old files from
pg_multixact/members and pg_multixact/offsets

~

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

relfrozenxid

e Per docs: “All transaction IDs before this one
have been replaced with a permanent (“frozen”) transaction ID in this

table”
e Tracks vacuum needs to prevent txid wraparound

and allowing shrinking of pg_xact

©EDB 2024 — ALL RIGHTS RESERVED .

WAL

Write Ahead Log

Logging of transactions

Designed to prevent data loss in most of the situations
OS crash, hardware failure, PostgreSQL crash.

Built-in feature

N

EEEEEEEEEEEEEEEEEEEEEEEEEEE

WAL

Transaction logging!

Replication

P|ITR

REDO

Sequentially availability is a must.

REDO vs UNDO

No REDO for temp tables and unlogged tables.

N

EEEEEEEEEEEEEEEEEEEEEEEEEEE

o0

LSN

e Log Sequence Number

©EDB 2024 — ALL RIGHTS RESERVED.

OO

LSN

e Log Sequence Number
e Position of the record in WAL file.

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C

~

LSN

e Log Sequence Number
e Position of the record in WAL file.
e Provides uniqueness for each WAL record.

©EDB 2024 — ALL RIGHTS RESERVED.

N

LSN

_0og Sequence Number

Position of the record in WAL file.

Provides uniqueness for each WAL record.
64-bit integer (historically 2x32-bit)

EEEEEEEEEEEEEEEEEEEEEEEEEEE

N

LSN

_0og Sequence Number

Position of the record in WAL file.

Provides uniqueness for each WAL record.
64-bit integer (historically 2x32-bit)

Per docs: “Pointer to a location in WAL file”

EEEEEEEEEEEEEEEEEEEEEEEEEEE

N

LSN

_0og Sequence Number

Position of the record in WAL file.

Provides uniqueness for each WAL record.
64-bit integer (historically 2x32-bit)

Per docs: “Pointer to a location in WAL file”
LSN: Block ID + Segment ID

EEEEEEEEEEEEEEEEEEEEEEEEEEE

~

LSN

_0og Sequence Number

Position of the record in WAL file.

Provides uniqueness for each WAL record.

64-bit integer (historically 2x32-bit)

Per docs: “Pointer to a location in WAL file”

LSN: Block ID + Segment ID

During recovery, LSN on the page and LSN in the WAL file are
compared.

EEEEEEEEEEEEEEEEEEEEEEEEEEE

~

LSN

_0og Sequence Number

Position of the record in WAL file.

Provides uniqueness for each WAL record.

64-bit integer (historically 2x32-bit)

Per docs: “Pointer to a location in WAL file”

LSN: Block ID + Segment ID

During recovery, LSN on the page and LSN in the WAL file are
compared.

e The larger one wins.

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Now it is time for questions!

» . EDB ,
Postgres for the Al Generation

Know the less known: A PostgreSQ

Devrim Gunduz
Postgres Expert @ EDB
Berlin PostgreSQL Meetup - July Edition

©EDB 2024 — ALL RIGHTS RESERVED.

